
installing & configuring

Hartmut Schirmacher
Max-Planck-Institut f̈ur Informatik

– the TCL-based automation software
available fromwww.tmk-site.org



Installing & Configuring tmk

(C)opyright Hartmut Schirmacher
Max-Planck-Institut f¨ur Informatik
Stuhlsatzenhausweg 85, 66123 Saarbr¨ucken

[draft version, August 4, 2000]
available from www.tmk-site.org

2



Contents

1 Getting TMK Up and Running 4
1.1 Unpack files from the archive .. . . . . . . . . . . . . . . . . . . . . 4
1.2 Install TCL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 MakeTMK accessible . . . . .. . . . . . . . . . . . . . . . . . . . . 4
1.4 Site-Specific Configuration . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Problems . . . ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 The Configuration System 7
2.1 The Config Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Config Structure Overview . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Config File Syntax and Commands . . . . . . . . . . . . . . . . . . . 9
2.4 Module Macro Variables . . .. . . . . . . . . . . . . . . . . . . . . 11

3 Architecture-dependent Configuration 12

4 Site-dependent Configuration 12

5 Compiler Configuration 12

Index 13

Introduction

This document provides you with the necessary information for configuringTMK ac-
cording to your needs. Section 1 is a quick reference for gettingTMK running on your
system using mostly default configuration. The later sections go into the details of
the configuration system, starting with the overall configuration design and going into
the details of three major parts: architecture-dependent configuration, site-dependent
configuration, and finally the meta compiler model and compiler configuration.

If you want to do more than just standard configuration tasks, and you are not
familiar with the TCL language, please consider reading the first chapter of theTMK

tutorial or any other introduction to the TCL language first.
If you have carefully read this document, and still have serious problems con-

figuring or runningTMK, please do not hesitate to contact theTMK developer team
through theTMK web pagewww.tmk-site.org .

3



1 Getting TMK Up and Running

This section briefly explains the steps that are needed to installTMK from scratch and
get the basic system running.

1.1 Unpack files from the archive

When you obtain theTMK distribution from theTMK web site, it comes as a packed
archive filetmk- release-number .tar.gz . You have to extract the files from
these archives in some software package directory, e.g. with thegunzip and tar
tools on UNIX systems:

gunzip tmk- release-number .tar.gz
tar xvf tmk- release-number .tar

or programs likewinzip on Windows systems (using its graphical user interface).
The extracted files will reside in a subdirectory calledtmk- release-number .
The actualTMK system is located intmk- release-number /tmk . We will call
this directory theTMK home directory.

1.2 Install TCL

Next, you need to make sure that you have a reasonably new version of TCL installed
on your system. The currentTMK release requires TCL versions 8.x, sinceTMK relies
on the namespace functionality and operations such asfile copy . You can obtain
TCL for free fromhttp:://dev.scriptics.com . Usually, you should have a
program calledtclsh in you path. You can find out its version by startingtclsh
and then typing

info tclversion

You can leave the TCL shell again by typingexit . If the TCL shell used forTMK

is not the one in your system’s search path, you can set the environment variable
TMKTCLSHto the desired shell program, andTMK will start using that shell.

1.3 Make TMK accessible

Next, you should includeTMK’s src subdirectory in the system’s search path (PATH
environment variable), or create a symbolic link or alias to the the actual ’executable’1.
On UNIX systems, this is a TCL script simply calledtmk in thesrc subdirectory,

1Don’t forget to typerehash if you’re usingcsh or tcsh . . .

4



while on Windows system this script is invoked via a batch file calledtmk.bat in
the same directory. Furthermore, on Windows systems you must set the environment
variableTMKHOMEto the absolute location (also including the drive letter) of the
TMK home directory, so that the batch file can find the TCL script.

If it should happen thatTMK cannot find its own location on UNIX systems (e.g.
it crashes inside the::tmk::scriptname function), you can also try to set the
TMKHOMEenvironment variable manually. If even this does not work, please report
the problem viawww.tmk-site.org .

1.4 Site-Specific Configuration

Now the basicTMK system should be ready to run. The only thing left to do is con-
figuring the differentTMK modules you want to use, mostly by specifying a number
of site-dependent path names. Let’s start by typing

tmk -sysinfo

Now TMK should display some information about the system it is running on. Par-
ticularly interesting items are the name of your machine (HOST), the currently used
network domain (DOMAIN), and the operating system class (OSCLASS). If you’re
not in a network, the domain name will be set tolocaldomain .

Now change toconfig/site in your TMK home directory. This is the location
whereTMK tries to findsite-specific configuration. On your system,TMK will look
for the following files, and read all existent files in the specified order:

� site-config.tmk

� DOMAIN

� DOMAIN:OSCLASS

� HOST:DOMAIN

� HOST:DOMAIN:OSCLASS

whereHOST, DOMAIN, andOSCLASSare again the placeholders for the actual sys-
tem information. So now you can create one or more of these files in order to do
the site-specific configuration for your machine or all machines in your network. For
example, if your machine is calledmymachine , and you are not connected to a
network, you could create the file

mymachine:localdomain

5



e.g. by copying one of the example configuration files which are calledsample.*
in the same directory. These sample files are named in such way that you can guess
for which kind of systems they are designed. Here is a small part of such an example
site config file for a Linux machine:

# example from site config for a RedHat Linux system

# specify include/lib path + lib names for X11
config set x11::INCPATH /usr/X11R6/include
config set x11::LIBPATH /usr/X11R6/lib
config set x11::LIBS fXt Xi Xext Xmu X11 g

# specify include/lib path + lib names for QT
config set qt::INCPATH /usr/include/qt2
config set qt::LIBPATH /usr/lib/qt2
config set qt::LIBS fqt g
# on UNIX, for QT you also need X11
config set qt::DEPEND fx11 g

As you can easily derive from this example, the main purpose of the site-specific
configuration is to specify the directory names, library names, and similar things
such as the executable files for some helper programs. Just check if the paths in
the example files match those on your system, and modify them if necessary. If you
want to know more about the meaning of theconfig set command and the config
variables specified in the files, please refer to the later sections of this document and
other detailed documentation onTMK.

Of course you only need to configure thoseTMK modules that you intend to use.
You can simply comment out all other lines by preceeding them with a hash character
(’#’), or you can simply delete the lines from the file.

After completing the site-specific configuration, just type

tmk -reconfig

and TMK will read all the relevant config files and store the result in its so-called
config cache filefor the current system. The name of that file is also displayed after
successful configuration.

1.5 Problems . . . ?

After the steps described above,TMK should be ready to go. However, there can
always arise circumstances in which the described procedure fails. If so, please con-

6



sider looking at thefrequently asked questions (FAQ), and specifically theinstallation
FAQ in the documentation section of theTMK web pages2, or contact theTMK team.

2 The Configuration System

One of TMK’s main features is the distinction between the actual control files for
the building process (e.g. aTMakefile ) and system-specific configuration settings.
There are several benefits from that, e.g.

� system-dependent code is mostly hidden from the user

� control files are portable and transparent

� configuration only needs to be done once, centrally (e.g. in a multi user network
environment)

� updates to new software package versions can be done transparently for all
users

In order to support all this,TMK has a dedicated subsystem that consists of a number
of files defining variables and procedures, depending on the systemTMK is actually
running on. This section gives an overview of the system, followed by some general
information about what config files are made of.

2.1 The Config Cache

As already mentioned, the config system processes a number of directories and files,
depending on the systemTMK is actually running on. Since this configuration takes
some time to be computed, the settings are stored in a so-calledconfig cache, so
that laterTMK only needs to read that single cache file instead of running through
the whole configuration process again. The config cache file can consist of centrally
defined settings plus user-defined settings, so one cache file is stored per user and
system. You can find out which system you’re on and which config cache file will be
used by typing

tmk -sysinfo

Furthermore, you can find out which filesTMK will process on the current system by
typing

tmk -reconfig
2http:://www.tmk-site.org/doc

7



This will cause the config files to be re-read and the config cache to be rebuilt, and
while doing thatTMK displays the names of all the files that are processed. In addi-
tion to this explicit cache update, there is a file calledrebuild cache in TMK’s
config/ directory. Whenever a user startsTMK, and the user’s current cache file is
older thanrebuild cache , TMK will do a -reconfig on its own. This way the
TMK administrator can ’commit’ global changes to all users.

The config cache name contains the name of the machine, the network domain
name, the operating system (and version), and some more information. So if you
have the same directories mounted under different operating system versions, you
will have one cache file for each version. Similarly, you have a different cache file
when you are connected to a network than when you are not. This way you can
easily account for software package locations or other configuration options that may
change depending on the different aspects of your system.

Here is an example: assume an Intel-based PC namedhorst that is usually
booted under Linux, but also under Windows. Both systems share the same directory
structure for compiling the softare projects. The computer may be, but is not nec-
essarily connected to a network domain namedmydomain.com . In that case, you
may have different cache files likes this:

config-i686-pc-linux-2.2-horst-mydomain.com
config-i686-pc-linux-2.2-horst-localdomain
config-i686-pc-mswin-98-horst-mydomain.com
config-i686-pc-mswin-98-horst-localdomain

As you can see, this example is for a Linux 2.2 kernel and Windows 98, respec-
tively. On UNIX systems, the cache files are stored in the user’s home directory, in
.tmk/cache/ . On Windows systems, the cache is either stored in the registry, or
in a user home directory if theHOMEenvironment variable is specified.

2.2 Config Structure Overview

The configuration system accounts for three ways in which systems may differ, re-
flected in the three main branches of theconfig subdirectory3:

� system architecture, e.g. operating system (arch/ )

� software environment, e.g. compiler (soft/ )

� site-specific configuration, e.g. location of software packages (site/ )
3Note that the absolute location of these three directories can be queried via the TCL variables

$tmk::dir arch , $tmk::dir soft , and$tmk::dir site . The compiler config resides in
soft/comp ($tmk::dir comp).

8



In the system architecture branch, things such as OS-specific file name conventions
are set up. Furthermore, this branch utilizes OS-specific system tools for auto-detecting
reasonable default values for most parts of the configuration.

The software environment branch currently only contains compiler configuration.
The reason why compilers have their own configuration branch is that compilers are
complex tools with lots of parameters and very different capabilities. SoTMK in-
ternally uses ameta compilermodel: whereever possible, theTMK user works with
the abstract meta compiler, and the compiler configuration maps the meta compiler
operations to the actual compiler implementations.

More details about what needs to be configured in each of these parts can be found
in Sections 3 – 5 further on in this document.

2.3 Config File Syntax and Commands

All config files are TCL/TMK scripts, meaning that they will be read and interpreted
by TMK using the TCL source command. So the file syntax is that of TCL. If you
want to learn more about the TCL language, you can have a look at theTMK tutorial
available fromwww.tmk-site.org , or at one of the many comprehensive TCL

tutorials that are commonly available (browsedev.scriptics.com for a list of
tutorials and books on TCL).

The task of a config file is to register a number of variables and procedures so
that they can be stored in the config cache (see previous section). SoTMK defines
a command for querying and modifying the contents of that cache. This command
is calledconfig , and has a number of subcommands. From the user’s point of
view, the most important ones areconfig set , config proc , andconfig
set later , and they will be briefly explained here. First, here is some example
code:

set pckg /opt/mypckg
config set qt::LIBS fqt g
config set qt::DEPEND fcxx x11 g

config set qt::LIBPATH "$pckg/qt2"

In the example you can see both the TCL set command and theTMK config set
command. Both take exactly the same kind of arguments, one variable name and one
value for that variable. If the value expression consists of a single word, it can be
specified as it is. If the expression is a list of several space-separated elements, if
it contains space or tab characters for other reasons, or if you want to exploit your
favourite editor’s syntax highlighting mode, the expression should be enclosed in

9



double quotes or curly braces4.
The TCL set command assigns it the given value immediately. Theconfig

set command also stores the variable inTMK’s config cache.
Usually all config variables for a certainTMK moduleare defined within the same

namespace, which is at the same time the module’s name (e.g.qt in the above ex-
ample). Instead of using the so-callednamespace qualifiersfor each variable name,
you can also use thenamespace eval command to evaluate a piece of code in a
certain namespace:

set pckg /opt/mypckg
namespace eval qt f

config set LIBS fqt g
config set DEPEND fcxx g

config set LIBPATH $pckg/qt2
g

In a way very similar toconfig set , you can useconfig proc to define a
procedure. Like the TCL proc command, it takes two arguments: a list of parameter
names and the procedure body script.

config proc ::filename_obj fshortname g f

return $ fshortname g.o
g

In the above example, a procedure in the global namespace is defined that returns the
filename for an object file, given the ’short’ name for the file. The function argument
is passed as a TCL variable namedshortname , and the function returns the value of
that variable, followed by.o . As you see, you can substitute the value of a variable
by writing either$variable-name or $fvariable-name g. By using braces,
you can make sure that characters following the expression will not be interpreted as
belonging to the variable name.

In TMK, functions are used for determining system-dependent file names, such as
for object files, executables, static and shared libraries, and so on. Compiler configu-
ration also mostly works via procedures.

Besides immediately assigning variables their value,TMK also provides a means
for delaying the evaluation of the value until the value is actually needed. This is
particularly important for values that need to be set dependent on conditions that can

4The difference between these two types of quoting is that within double quotes,variable and
command substitution(e.g. the$pckg expression in the last line of the example) still work, whereas
an expression in curly braces is not interpreted in any way. Curly braces, however, can be used to
createnested lists.

10



only be evaluated after processing theTMakefile or in a different branch of the
configuration. For that reason,TMK defines theconfig set lazy command:

config set_lazy glut::LIBPATH f

switch $link::LINKER f

"cxx::mipspro" freturn "/opt/pckg/glut/lib_mipspro" g

"default" freturn "/opt/pckg/glut/lib" g

g

g

In this example, the value of$glut::LIBPATH depends on the atually chosen
linker. The variable will be needed when theglut module is loaded from within a
TMakefile . At that moment,TMK will execute the specified code (containing the
switch statement etc.), and set$glut::LIBPATH according to the value returned
by that piece of code (which is treated just like the body of a procedure). However,
this does not prevent a user or module from changing the$link::LINKER variable
even later (e.g. by choosing a different compiler), which may then result in the wrong
library path. Note that this is one of the reasons why you should always load language
modules (c/cxx)beforelibrary modules.

2.4 Module Macro Variables

Some config variables, the so-calledmodule macro variables, always have the same
meaning, and will trigger a certain action automatically when the user invokes the
corresponding module. In the example from page 9, all used variables are of that
kind, so for example the$LIBPATH variable will trigger a piece of code that appends
the specified path(s) to the linker module’s library path variable. Here is a list of all
currently defined macro variables:

$module ::INCPATH : appends the list elements to the C and C++ modules’ in-
clude paths

$module ::LIBPATH : appends the list elements to the linker’s library path

$module ::LIBS : appends the list elements to the linker’s current set of exter-
nal/system libraries

$module ::DEPEND: specifies inter-module dependencies. If moduleX depends
on moduleY, Y will always be loaded and execute beforeX

So if you want to make a set of libraries available to the user in a transparent way, just
create a module and specify the location and name of the libs in the site config file.

11



If on a different system the libraries have a different name or location, this will only
be accounted for in the config file, not in everyTMakefile that uses these libraries.
For example, if you want to wrap the math library in that way, you could add a line
like this:

config set math::LIBS m

So instead of specifying the math library explicitly in theTMakefile , the user can
now write something like

module math

If on some system using the math library requires an additional library path, or the
library has a different name, you can just add the corresponding line in the config
system. This may not make much sense for the math library, but for example for
thread libraries.

3 Architecture-dependent Configuration

. . . sorry, coming soon . . .

4 Site-dependent Configuration

5 Compiler Configuration

12



Index
$module ::DEPEND variable, 11
$module ::INCPATH variable, 11
$module ::LIBPATH variable, 11
$module ::LIBS variable, 11

command substitution, 10
config command, 9
config cache, 7

glut module, 11

home dirctory
for tmk, 4

meta compiler model, 9
module macro variables, 11

namespace, 10
nested lists, 10

proc command, 10

-reconfig command line option, 6,
8

set command, 9
source command, 9
switch command, 11
-sysinfo command line option, 5, 7

tmk home directory, 4

variable substitution, 10

13


