
Thetmk Automation Tool

Hartmut Schirmacher, Stefan Brabec

Max-Planck-Institut f̈ur Informatik
Im Stadtwald, 66123 Saarbrücken, Germany

http://www.mpi-sb.mpg.de/
{schirmacher,brabec }@mpi-sb.mpg.de

note: this is an early draft version,
not consistent with currenttmk application

Contents

1 Introduction and Overview 4
1.1 How to Read This Manual . 5
1.2 TCL Basics and Expression Evaluation . 6

2 Getting started 9
2.1 C++ Compiling in a Single Directory . 9
2.2 A Simple Project Tree . 10

3 The tmk core 13
3.1 Specify Which Targets to be Built . 13
3.2 Simple Targets and Rules . 14
3.3 Multiple Targets and T-Expressions . 15
3.4 Target Patterns . 16
3.5 Specifying Secondary Dependencies . 16
3.6 Resolving Multiple Rules for One Target 17
3.7 Dependency Chains . 18
3.8 Multiple Architecture / Codelevel Support 18
3.9 Processing Subdirectories . 20

3.9.1 Processing and Excluding Subdirectories 20
3.9.2 Directory-Based Parallel Processing 21

3.10 Project Makefile . 21
3.11 Debugging . 22

4 Modules 24
4.1 Thedefault Module . 25

4.1.1 Automatic Target Generation and Exclusion 25
4.1.2 Library Specification . 26
4.1.3 Multiple Project Locations . 27
4.1.4 Local Library Generation . 28
4.1.5 Executable Generation . 28
4.1.6 Default Module: Example . 28

2

4.1.7 Enforce Building of a Target . 29
4.1.8 Cleaning Up . 30
4.1.9 Regenerating File Dependencies 30
4.1.10 default Module Internals . 31

4.2 c andcxx : C/C++ Compilation . 31
4.2.1 Compilation and Dependencies 31
4.2.2 Automatic Target Generation . 33

4.3 qt : QT Library / Precompiler . 34
4.4 yacc : Parser Generator . 34
4.5 lex : Lexicographical Analyzer . 35
4.6 doxygen : C/C++ Documentation Generation 35
4.7 newclass : Generate Files From Templates 36
4.8 dist : Make Executable Distributions . 38
4.9 db : Simple Database Interface . 40

4.9.1 Database definition . 40
4.9.2 Working on the Database . 41
4.9.3 Working on Single Records . 42
4.9.4 Advanced Record Definitions . 43

4.10 latex : Using LaTeX, BibTeX etc.(experimental!). 44
4.11 Writing Your Own Modules . 45

5 Installation and Configuration 46
5.1 Installingtmk on your system . 46
5.2 Configuring tmk . 46

A Misc tmk Functions and Variables 47
A.1 List Operations . 47
A.2 Execution, Logging, and Debugging . 48
A.3 Target Names, File Names, Directories . 49

B Index of Variables 51

C Index of Built-In Functions 56

D Index of tmk Command Line Options 57

3

Chapter 1

Introduction and Overview

The nametmk stands for “TCL-based make”. It tries to combine the flexibility and power of
the scripting language TCL1 on the one hand, and the simplicity and utility ofmake2 with its
Makefiles on the other.tmk was greatly inspired by theamk program written by Philipp
Slusallek3 at the University of Erlangen.

On the one hand, thetmk program has been designed for managing large code trees
without writing exhaustive Makefiles for each directory in the tree. On the other hand, the
tmk user is able to write very flexible and powerful scripts in order to automate special tasks
in certain projects or subprojects.

Since most projects consist of tasks which are repeated over and over and in a similar
fashion in many different directories,tmk tries to simplify the specification of these tasks by
providing

• a convenient specification and scriptinglanguage

• a simple way of specifyingtargets, dependencies, and buildingrules

• a module conceptwhich provides a way of specifying common rules and automati-
cally generating targets in an easy and transparent way

• a set ofpredefined modulesfor handling the most common tasks like compilation of
C and C++ code and linking of libraries and executables

Sincetmk can be extended very easily, and since these extensions can be kept orthogonal to
each other by means of the module concept, it is suited for performing any task which has
to to with writing scripts and calling compilers, converters, and other programs in order to
assemble target files from a number of source files.

1see for example John K. Ousterhout,Tcl and the Tk Toolkit, Addison Wesley, 1994
2see ’man make’
3email: slusallek@informatik.uni-erlangen.de

4

tmk requires some basic understanding of the TCL language, since the controlling files
are written as TCL code. Section 1.2 gives a brief introduction to the most important concepts
of how to specify lists and how TCL will expand expressions containing variables, quotes,
and escape characters.

1.1 How to Read This Manual

This documentation is organized as follows:

• Chapter 1 contains the introduction into the basic ideas oftmk as well as the basic
rules which define the TCL language, which is the basis of all description files driving
tmk ’s behaviour.

• Chapter 2 uses some simple examples to demonstrate creating a project, compiling,
and linking withtmk .

• Chapter 3 provides a complete documentation oftmk ’s core features (those which
are not implemented in a module, but in thetmk program). These features contain
the manual specification of targets, rules, and dependencies, as well as subdirectory
processing, multiple architecture support, project makefiles, and so on.

• Chapter 4 gives an introduction as well as an in-detail documentation of thetmk mod-
ule mechanism and the function of the provided modules. It also gives some hint of
how to write your own modules. Chapter A gives some details about additional func-
tions provided for operating on lists of files, executing system commands, logging, and
handling target names transparently.

• Chapter 5 tells you how to installtmk on your system and how to configure some of
the basic mechanisms so that they fit into your personal environment.

• The appendix contains indices of alltmk command line options, global variables,
environment variables, and built-in functions.

As a noveltmk user, you should start with the TCL language basics presented in 1.2,
followed by the “getting started” in Section 2.

After that, your further reading depends on what kind of job you wanttmk to do for you.
In most cases, you’re going to usetmk for building executables and libraries, so you should
try to understand in more detail how to use thedefault module (cf. Sec. 4.1). But you
might as well continue with any other module description from Chapter 4.

If you’re planning to dive deeper into the mechanisms oftmk , you can read about the
“ tmk core” (Chapter 3). However, this is only necessary if you want to track whattmk is
doing with your files, or if you want to write your own custom rules and targets.

5

For those people how want to implement a new module, it would be a good thing to
browse through some of the other modules’ description in order to get a feeling for the
general idea of a module. Then the only really advisable thing is to have a look at the
module’s source files and create new code by learning from the existing modules. The list of
variables and functions in the appendices might prove useful to that end.

1.2 TCL Basics and Expression Evaluation

SinceTMakefile relies heavily on the features of the TCL language, it is useful to know
some basics about TCL. Most of the following page is a reformatted version of the manual
page that you can get usingman tcl . The following rules define the syntax and semantics
of the Tcl language:

[1] A Tcl script is astring containing one or morecommands. Semicolons and newlines
are command separators unless quoted as described below. Close brackets are command
terminators during command substitution (see below) unless quoted.

[2] A command is evaluated in two steps. First, the Tcl interpreter breaks the command
into wordsand performs substitutions as described below. These substitutions are performed
in the same way for all commands. The first word is used to locate a commandprocedure
to carry out the command, then all of the words of the command are passed to the command
procedure. The command procedure is free to interpret each of its words in any way it likes,
such as an integer, variable name, list, or Tcl script. Different commands interpret their
words differently.

[3] Words of a command are separated bywhite space(except for newlines, which are
command separators).

[4] If the first character of a word isdouble-quote(”) then the word is terminated by
the next double-quote character. If semicolons, close brackets, or white space characters
(including newlines) appear between the quotes then they are treated as ordinary charac-
ters and included in the word. Command substitution, variable substitution, and backslash
substitution are performed on the characters between the quotes as described below. The
double-quotes are not retained as part of the word.

[5] If the first character of a word is an openbrace({) then the word is terminated by
the matching close brace (}). Braces nest within the word: for each additional open brace
there must be an additional close brace (however, if an open brace or close brace within the
word is quoted with a backslash then it is not counted in locating the matching close brace).
No substitutions are performed on the characters between the braces except for backslash-
newline substitutions described below, nor do semicolons, newlines, close brackets, or white
space receive any special interpretation. The word will consist of exactly the characters
between the outer braces, not including the braces themselves.

[6] If a word contains an open bracket (“[”) then Tcl performscommand substitution.
To do this it invokes the Tcl interpreter recursively to process the characters following the

6

open bracket as a Tcl script. The script may contain any number of commands and must be
terminated by a close bracket (“]”). The result of the script (i.e. the result of its last com-
mand) is substituted into the word in place of the brackets and all of the characters between
them. There may be any number of command substitutions in a single word. Command
substitution is not performed on words enclosed in braces.

[7] If a word contains a dollar-sign ($) then Tcl performsvariable substitution: the dollar-
sign and the following characters are replaced in the word by the value of a variable. Variable
substitution may take any of the following forms:

• $name: name is the name of a scalar variable; the name is terminated by any character
that isn’t a letter, digit, or underscore.

• $name(index) : name gives the name of an array variable andindex gives the
name of an element within that array.name must contain only letters, digits, and un-
derscores. Command substitutions, variable substitutions, and backslash substitutions
are performed on the characters ofindex

• ${name}: name is the name of a scalar variable. It may contain any characters
whatsoever except for close braces.

There may be any number of variable substitutions in a single word. Variable substitution
is not performed on words enclosed in braces.

[8] If a backslash (\) appears within a word thenbackslash substitutionoccurs. In all
cases but those described below the backslash is dropped and the following character is
treated as an ordinary character and included in the word. This allows characters such as
double quotes, close brackets, and dollar signs to be included in words without triggering
special processing. The following table lists the backslash sequences that are handled spe-
cially, along with the value that replaces each sequence.

• \a: Audible alert (bell) (0x7).

• \b: Backspace (0x8).

• \f : Form feed (0xc).

• \n: Newline (0xa).

• \r : Carriage-return (0xd).

• \t : Tab (0x9).

• \v : Vertical tab (0xb).

7

• \<newline >whiteSpace : A single space character replaces the backslash, new-
line, and all spaces and tabs after the newline. This backslash sequence is unique in
that it is replaced in a separate prepass before the command is actually parsed. This
means that it will be replaced even when it occurs between braces, and the resulting
space will be treated as a word separator if it isn’t in braces or quotes.

• \\: Backslash (\).

• \ooo : The digitsooo (one, two, or three of them give an eight-bit octal value for the
Unicode character that will be inserted. The upper bits of the Unicode character will
be 0.

• \xhh The hexadecimal digitshh give an eight-bit hexadecimal value for the Unicode
character that will be inserted. Any number of hexadecimal digits may be present;
however, all but the last two are ignored (the result is always a one-byte quantity). The
upper bits of the Unicode character will be 0.

• \uhhhh The hexadecimal digitshhhh (one, two, three, or four of them) give a sixteen-
bit hexadecimal value for the Unicode-character that will be inserted.

Backslash substitution is not performed on words enclosed in braces, except for backslash-
newline as described above.

[9] If a hash character (#) appears at a point where Tcl is expecting the first character
of the first word of a command, then the hash character and the characters that follow it, up
through the next newline, are treated as a comment and ignored. The comment character
only has significance when it appears at the beginning of a command.

[10] Each character is processed exactly once by the Tcl interpreter as part of creating the
words of a command. For example, if variable substitution occurs then no further substitu-
tions are performed on the value of the variable; the value is inserted into the word verbatim.
If command substitution occurs then the nested command is processed entirely by the recur-
sive call to the Tcl interpreter; no substitutions are performed before making the recursive
call and no additional substitutions are performed on the result of the nested script.

[11] Substitutions do not affect the word boundaries of a command. For example, during
variable substitution the entire value of the variable becomes part of a single word, even if
the variable’s value contains spaces.

8

Chapter 2

Getting started

This section provides a quick start introduction to some oftmk ’s features by creating a
simple example project. The system commands and file naming conventions are for UNIX-
style operating systems.

2.1 C++ Compiling in a Single Directory

Suppose you have a directory containing the C++ source filesa.C , b.C , c.C , andmyprog.C ,
and you want to compile them all into a single executable program, withmyprog.C pro-
viding themain() routine. If tmk is installed on your system, you simply need to provide
a file namedTMakefile containing the following lines:

module cxx
lappend PROGRAMS myprog

The first line calls themodule command which reads thecxx module and apply rules
and target detection for the C++ language. The second line appends the word “myprog” to
the variable$PROGRAMS, treating the contents of the variable as a list. This waytmk is
instructed to build an executable programmyprog from the object filemyprog.o .

Having created this file in your directory, you just calltmk without any arguments, and
the following things will happen:

• A target directory for your current architecture and code level will be created. E.g. if
you’re working under IRIX 6.5 and with the default code level, this will be the direc-
tory IRIX6.5/ . tmk will try to place all generated files in that directory (sometimes
this doesn’t work because a compiler cannot be convinced to put everything where you
want to).

• All .C files will be compiled into their corresponding.o files using the standard C++
compiler directives.

9

• All .o files except myprog.o will be put into a shared library namedlib directory .so .

• The executablemyprog is created by linking togethermyprog.o and the library
lib directory .so .

• For each.o file, a corresponding.dep file will be created in the target directory
which contains dependency information about the file. This is used to determine when
it is necessary to rebuild a target if some source file has changed.

The library containing all object files not corresponding to an executable is calledlocal
library. The default behaviour oftmk is to generate one such local library for every project
directory containing one or more suitable object files.

The executable you’re building may also depend on some external library, like the math
library. In order to link the math library and some other libmylib to your executable, you
just specify an additional line

lappend SYSLIBS "m mylib"

and tmk will add the linker directives for linking the libraries to the executablemyprog .
If some library cannot be found in one of the standard library locations of your system, you
can additionally specify where to find such libraries:

lappend LIBPATH $env($HOME)/mylibs/

This will generate the linker options for finding the libraries at link time as well as at run
time (for shared libraries). The expression$env($HOME) evaluates to the value of the
environment variable$HOMEset by the shelltmk was started from.

If you modify one of the source files, e.g.b.C , and calltmk again,tmk will recognize
thatb.C has changed (by means of the file modification time), and only recompileb.o and
relink the executable. In a similar way,tmk recognizes when some of the included header
files have changed (through the.d dependency files), and recompiles the corresponding
object files.

Another feature when using the architecture-dependent target directories as described
above is the simple way of cleaning up such a dirctory. If you type

tmk clean

the directoryIRIX65/ will simply be deleted, removing all automatically generated targets.

2.2 A Simple Project Tree

Now let’s assume that you have a project consisting of several directories under some root
directory. In this case, you create a fileTMakefile.proj in the tree’s root containing

10

global variable declarations for the whole project (like compilation flags etc.). The location
of the global project file defines the value of the variable$PROJDIR, which is used to access
the root directory of the current project. For a start,TMakefile.proj may be empty.

Additionally, you have to put oneTMakefile in each directory of you project. These
TMakefile ’s may for example contain a line like this:

subdir [glob -nocomplain *]

The subdir command takes a list of names and tellstmk to recursively build targets in
all directories in the list in which it can find anotherTMakefile . The TCL command
[glob *] expands to the list of all files in the current directory. The-nocomplain
option prevents the output of error messages if no files are present.subdir will filter out
all names which do not correspond to a directory, or do not contain aTMakefile .

Now, if you call tmk in any directory within your project tree,tmk will first build all
existent subdirectories, and then the directory you have calledtmk in. By typing tmk -
local , you can preventtmk from recursing into the subdirectories.

In each subdirectory of your project, you may use different modules and define special
targets and rules. One feature automatically provided bytmk is the generation of a library for
each directory consisting of all object files which do not correspond to an executable. If the
example from Section 2 takes place in some directorymydir/ , tmk creates a library named
libmydir.so (or .a , depending on the settings) in the target directory. This library would
contain all the object files exceptmyprog.o .

With this automatic library feature, it is very easy to reuse code from one project directory
in another one, since you can simply link the corresponding library to you executable in
the other directory. For example, if$PROJDIR points to some project directory named
myproj , and you are in the subdirectorymyproj/a/b/ and want to use the functionality
of the library in directorymyproj/x/y/z/ , you just have to specify

set PROJLIBS myproj/x/y/z

in theTMakefile in themyproj/a/b directory. This will automatically deduce the cor-
rect library path and library name for you (depending on the$ARCHsetting etc.). Similarly,
is $PROJDIR is set, thec andcxx modules will add the parent directory of$PROJDIRas
an include path. This way, if your project root directory is namedMYPROJ, you may include
specific header files from within other directories in the project like this in your C++ code:

#include <MYPROJ/x/y/z/someheader.hh>
#include <MYPROJ/x/y/z/some_other_header.hh>

These#include statements will still work if you change the root directory of you project
one day. Besides from that, it provides an independent name space for your header files. For
more information about the automatic linking, library, and project features, please consult
Sections 3.10 and 4.1.4.

11

It is important to note that it requires some conformance of how to organize the source
code in order to get the maximum performance with minimal effort out oftmk . The most
important rules of thumb are:

• Organize your code into subdirectories. Each subdirectory should contain some sub-
project in the sense that the files are somehow closely related to each other by function.
The directory structure should be planned so that it remains constant except for newly
added directories.

• Implement all features which should be reusable in simple source files which do not
contain amain() routine. For testing or applying the code, write an extra source file
containingmain() . If you do so, all the functionality of the directory can be put into
the library, and the test program or application is separated from it.

• Try to split your project into the core parts and the applications using the core parts
(in separate directories). Then make sure that the core is always compiled before the
applications.

• Try to apply a consistent naming scheme for your directories, files and code objects.
This way you may easily replace names by others, your code is more readable, and it
is easier to navigate in you code tree.

12

Chapter 3

The tmk core

The basic process when usingtmk is similar to using the well-knownmake tool. When
calling tmk , it searches for a file calledTMakefile in the current working directory. In
contrast to a standardMakefile , the TMakefile is interpreted sequentially and may
contain arbitrary TCL statements in order to define or modify variables, produce output, or do
anything you want. In addition to standard TCL commands, several specialtmk commands
and variables can be used in order to define targets, dependencies, and building rules.

The basic assumption fortmk is that you have a number oftargetfiles, eachdepending
on severalsource filesor dependenciesby means of correspondingrules. When the target
does not exist, or whenever one or more of the source files change, the target must be rebuilt
by executing the appropriate commands. This is the main process for all kinds of devel-
opment tasks, e.g. the edit-compile-link-test cycle of software development or any similar
process involving compilers, translators, filters, etc.

3.1 Specify Which Targets to be Built

The only way to maketmk do anything is to specify which targets you would like to have
built. This is basically done by means of thebuild command:

build <list of targets>

This tells tmk to add the specified targets to the list of targets to be processed. This will
not cause any immediate action.tmk will continue to parse the completeTMakefile
before starting to build all the targets. The order of target building is determined by their
appearance in theTMakefile , plus the recursive building process which always builds all
dependencies before building the dependent target.

Instead of listing the targets in theTMakefile , you can also specify the desired targets
at the command line oftmk , overriding thebuild commands in theTMakefile . If no

13

target is specified either way or by using the automatic target generation (cf. Sec. 4.1.1),tmk
will exit with an appropriate message.

If targets are generated automatically, you sometimes need the option of including some
files from being build. Thetmk default module will exclude all targets in the$EXCLUDE
variable from being built explicitly. If a target appears in a lower level of a dependency chain
(meaning it is an indirect target), the$EXCLUDEmechanism does not apply.

3.2 Simple Targets and Rules

In order to specify which files a target depends on and how it can be built from those depen-
dencies, theTMakefile may contain one or severaltarget commands of the form:

target <target> <source files> <command>

While we assume<target> to be a single file name here,<source files> can be an arbitrary
TCL list of file names.<command> can be any valid TCL script, usually enclosed in braces.
A simple example would read like this:

target myprog myprog.o {
cmd CC -o $TARGET $SRC

}

Now, if the user typestmk myprog , tmk will execute the command

CC -o <somedir>/myprog <somedir>/myprog.o

where<somedir> is the directory in whichtmk puts all automatically generated files
by default (cf. Sec. 3.8). The specified command will only be issued ifmyprog.o has
changed since the last build or if the target filemyprog does not exist. You may override
this behaviour by means of the-force option (cf. Sec. D). The use of the special variables
$TARGETand$SRCis explained in more detail in the next section.

tmk commandcmd is used in order to execute a system user command in a shell (see
Sec. A.2). The listedCCcommand will link the object file and produce the executable.cmd
is similar to the TCL commandexec , except that it echoes the command and pipes the
standard input, output, and error streams to the terminal.

A special case is when<source files> is empty (specified as{}). This means that the
target has to be built independently of any changes in any source files. So,tmk will always
try to rebuild it if it comes across this target.

14

3.3 Multiple Targets and T-Expressions

If multiple targets have to be built by the same kind of commands, it may seem useful to
specify a wholelist of targets and to derive the source file names from the name of the
current target. Thetarget command in an extended form can be used like this:

target <target files> <source files> <commands>

Instead of specifying only a single target, you can use any TCL list of targets. Both<source
files> and<commands> are so-calledtarget-dependent expressionsor T-expressions. As
already demonstrated in the previous section, T-expression may contain a number of special
variables which are setto target-dependent values before expanding the expression (by means
of the TCL[eval] command) at building time:

• $TARGET: the full target name, including architecture-depending target directories

• $ROOT: all characters of$TARGETup to (but not including) the last dot (cf. TCL
command[file rootname $TARGET])

• $EXT: all characters from the last dot on, or the empty string if target name contains
no dot (cf. TCL[file extension $TARGET])

• $DIR : all characters up to the last slash, or ’.’ if there are no slashes in the target name
(cf. TCL [file dirname $TARGET])

• $TAIL : all characters after the last slash, or the empty string (cf. TCL[file tail
$TARGET])

• $BASE: all characters after the last slash and before the last dot (cf.[file root-
name [file tail $TARGET]])

In addition to these variables which are common to all T-expressions, you may use the$SRC
variable wihtin the<commands> argument in order to get a list of all source files. While in
this simple example, you could simply use the files explicitly, there are situations where it
is imperative to use$SRC(e.g. in the case of architecture-dependent targets and a list more
than one source files, cf. Sec. 3.8). If you want to pick one of the source files from the list,
you may employ TCL commands like[lindex <list> <index>] (cf. Sec. 1.2).

It is important to note that both<source files> and<commands> will be evaluated on
theglobal level. This means that all global variables will be known without declaring them
explicitly. On the other hand, local variables declared within a procedure or temporarily set
within a loop will not be known within the target expression at building time.

A simple example will clarify the use of T-expressions for the target declaration:

15

set CCFLAGS "-g"
target {myprog yourprog} {$ROOT.o someother.o} {

cmd CC $CCFLAGS -o $ROOT $SRC
}

This line in a TMakefile tells tmk that myprog can be built frommyprog.o and
someother.o , andyourprog from yourprog.o andsomeother.o , respectively.
For buildingyourprog , tmk will execute

CC -g -o yourprog yourprog.o someother.o

This way you can specify a whole list of files which obey the same rule. Note, however, that
T-expr ’s must be quoted so that the special target-depenedent variables like$ROOTwill
not be expanded when parsing theTMakefile (which would result in an error message).
For more information about expression evaluation, see Section 1.2.

3.4 Target Patterns

Since there are many standard procedures and naming conventions in the software develop-
ment cycle, it seems desirable to specify a rule of how to build all instances of a wholeclass
of targets. A class of targets may be specified with help of file name patterns as used in the
TCL glob command and in the file name expansion scheme of most shells. To this end, we
have a look at thetarget command in its most general form:

target <target patterns> <source files> <commands>

When building the targets, the current target will be compared to each of the patterns spec-
ified in <target patterns> by means of the TCL built-in[string match] command
which expands glob-style patterns. Both arguments<source files> and<commands> work
like described in Section 3.3, with the option of using T-expressions.

For example, in order to automatically compile.C files into the corresponding.o files,
the following statement would suffice:

target *.o $ROOT.C {cmd CC -o $ROOT.o -c $SRC}

Now, whenever a target has to be built which matches the pattern*.o , tmk will look if there
is a corresponding.C file and, if needed, will start the compiler in order to produce a new
.o file.

3.5 Specifying Secondary Dependencies

In addition to the primary dependencies between a target and the source files which are
used directly in the building rule, you can provide lots ofsecondarydependencies (e.g. files

16

included in the source files). For example, if you want to build an object filex.o from a
C++ file x.C , andx.C includes some files likea.h andb.h , you should telltmk that
x.o should be rebuilt whenevera.h or b.h have changed, even though the.h files do
not appear directly in the building rule commands. This can be achieved by means of the
depend command which has the following syntax:

depend <target> <source file list>

Thedepend command can be understood like atarget statement without a command ar-
gument. Additionally,depend only takes a single target argument and does not understand
T-expressions. This is due to the fact thatdepend should only be used in the context of
targetinstances, not for general rules. Usually, secondary dependencies are generated auto-
matically. In the case of C++ code, the C module makes the compiler dump dependencies
into special files and then generatesdepend commands from those files on the fly. See
Section 4.2 for a more detailed discussion of this topic.

In order to preventtmk from checking dependencies to system header files and similar
code, the user can list file patterns in the variable$DEPENDEXCLUDE. This variable is
set to/usr/include/* in the default module, and will prevent any file below that
directory to be checked as a secondary dependency. Just add more paths to be excluded as
you like.

It is important to note that in order for a target to be built, all its secondary dependencies
must exist (or must have been built). If a secondary dependency does not exist and cannot be
built, tmk will immediately exit with an error. In contrast, if aprimarydependency does not
exist and cannot be built, this only means that the chosen rule for the current target cannot
be applied, andtmk will try to apply the next rule. Only ifno rule can be applied,tmk exits
with an error.

3.6 Resolving Multiple Rules for One Target

If you specify multiple building rules for the same target,tmk will use the first of these rules
which is applicable, meaning that all the primary and secondary dependencies for the rule
exist or can be built recursively.

When trying to build a target,tmk will go through all rules with matching target patterns
in the order of their specification. For each rule,tmk first tries to find or build all the pri-
mary and dependencies. If all primary dependencies are at hand, it checks all the secondary
dependencies. If both exist or have been built,tmk applies the rule and skips all other rules.

If the primary dependencies (or source files) for some rule cannot be built,tmk skips
this rule and tries to apply the next one. If no rule is applicable,tmk will exit with an error
message.

17

3.7 Dependency Chains

Up to now, we have concentrated ondirectdependencies. Usually, a building cycle contains
wholechainsof dependencies. For example, some final executablemyprog will depend on
some object filemyprog.obj , which will again depend on some source filemyprog.C ,
and on included files likemyprog.h . In order to process this chain of dependencies cor-
rectly, tmk recursively collects all dependency chains for the current target until if finds
no more applicable dependency rules. Once the dependencies have been collected, it starts
from the bottommost dependency file (the last in the chain) and works its way up to the
target. Let’s have a look at an example:

target myprog myprog.o {exec CC -o $TARGET $SRC}
target myprog.o myprog.C {exec CC $CCFLAGS -c -o $TARGET $SRC}
target myprog.o myprog.c {exec cc $CFLAGS -c -o $TARGET $SRC}
depend myprog.o myprog.h
build myprog

ThisTMakefile explicitly specifies two dependency chains:

1. myprog ← myprog.o ← {myprog.C , myprog.h }

2. myprog ← myprog.o ← {myprog.c , myprog.h }

tmk will start to work its way up from the end of the first chain. It checks ifmyprog.h or
myprog.C are newer thanmyprog.o (or the.o does not exist). If so, it will use theCC
-c command in order to build the object file. Next, it will compare the date of the object
file to that of the executablemyprog . Again, it will issue the appropriate command if the
executable has to be rebuilt. If any of the bottom-most dependencies do not exist (e.g. if
there is nomyprog.C), tmk will not be able to build the target using the first chain. So it
will try the second chain, requiring a.c file. If this file exists, the target will be built from
it. If not, and if no other applicable chains exits,tmk will exit with an error.

3.8 Multiple Architecture / Codelevel Support

to be updated soon
tmk supports the parallel development for multiple architectures by means of a simple

mechanism. If the global variable$USE ARCHis set to 1, the variable$ARCHwill deter-
mine the currently active architecture.tmk will automatically place all targets in a directory
named$ARCH/. If you specify a target filepath/targ , tmk will effectively create the tar-
getpath/$ARCH/targ . The$ARCH/ directory will be created if it doesn’t exist. When
specifying a dependency filepath/file , tmk will first look for existance of that file, than
for the filepath/$ARCH/file . This means that concerning the specification of target and

18

dependency names, the multiple-architecture support is completely transparent to the writer
of the TMakefile and of tmk modules. One must only take care that the architecture
names do not interfere with directory names reserved for other purposes.

Since all generated targets reside in a single directory, it is very easy to “clean up” a
directory. If $USE ARCHis true, the default module (see Sec. 4.1) will define the target
clean , which will simply perform the UNIX commandrm -rf $ARCH in the current
directory. So the command

tmk clean

will remove all targets which can be rebuilt by callingtmk .
In order to support architecture-dependent source coding, each module should support

passing of the$ARCHvariable to the compilers and linkers in order to allow for architecture-
dependent code compilation (see example below).

In order to define rules which depend on the underlying architecture, you simply use
conditional TCL expressions in conjunction with the$ARCHvariable, e.g. :

if $USE_ARCH {
append CCFLAGS " -DARCH_$ARCH"

}

if { "$ARCH" == "IRIX6.5" } {
set myCC [exec which CC]

} else {
set myCC [exec which g++]

}

[...]

target *.o {$ROOT.C} {cmd $myCC $CCFLAGS -c -o $TARGET $SRC}

In this example, if the current architecture is set toIRIX6.5 , the compiler will define the
macroARCHIRIX6.5 so that C++ code parts may be placed within compile-time condi-
tional statements like this:

#ifdef ARCH_IRIX65
[...]

#endif

The currently active architecture can be set at thetmk command line using the-arch
option. The default architecture is determined from the globaltmk configuration installed
on your system (see Section 5).

19

The$ARCHname is normalized after parsing thetmk command line options, and once
again before parsing theTMakefile . Normalization in this context means that all outer
spaces as well as all trailing slashes will be removed.

If you want to pass target names to external commands outside of atarget command,
you need to determine the correct target location by yourself. To this end, you may use the
functionsshortTargetName andfullTargetName as described in Section A.3.

3.9 Processing Subdirectories

Since most non-trivial projects are organised in tree-like directory structures,tmk directly
supports recursive subdirectory processing, including features like environment variable pass-
ing and parallel processing of subdirectory lists.

3.9.1 Processing and Excluding Subdirectories

Since it is assumed that subdirectory contain smaller parts of the targets in the current di-
rectory, subdirectories are always processedbeforethe current directory. In order to specify
which subdirectories will be processed, just declare them like this:

subdir <subdir list>

tmk will first exclude all directories from the<subdir list> which are contained in the
$SUBDIR EXCLUDEvariable. Then, it will filter out all names which do not correspond to
an existing directory by means of the TCL[file isdirectory] command. Next, it
will skip all directories which do not contain aTMakefile . This is especially important if
you build targets for multiple architectures (cf. Sec. 3.8), sincetmk must distinguish genuine
code directories from the self-generated$ARCHdirectories.

Only the remaining directories will be processed. Tilde expressions will be correctly ex-
panded (see TCL file command man page). Subdirectory processing will take place at exactly
the time when thesubdir command is being processed during parsing theTMakefile .

For example, if you always wantall current subdirectories to be processed, you may
include the following line:

subdir [glob -nocomplain *]

The argument expression determines the list of all files in the current directory (possibly
none, without generating an error).tmk will automatically filter out everything which is not
a directory or does not contain aTMakefile , and so it will descend only in the reelevant
directories.

When processing the specified subdirectories, the program$TMKwill be called with the
command line arguments in$ARGS. $ARGSwill be filled with the arguments passed to the
current instance oftmk .

20

TCL variables arenot passed down to thetmk subprocesses. This is mainly due to the
fact that an invocation oftmk in a subdirectory should normally do the same thing as iftmk
would have been invoked recursively from within a parent directory.

However, if you want to pass variables down to the subprocess, you can employ the
environment variable mechanism by means of the TCLenv array. Use the variable name
$env(SOMEVAR) in order to access the environment variable$SOMEVARin the current
environment.

3.9.2 Directory-Based Parallel Processing

Since often subdirectories can be processed independently of each other,tmk provides a way
of specifying that certain directories can be processed in parallel. The user simply specifies
a list of lists of directoriesinstead of a simple list:

subdir <list-of-lists of subdirectories>

All directories of eachinner list will be processed in parallel. A simple example would read
like this:

subdir {{testA testB} {testC testD testE}}

This would cause the parallel building of directoriestestA andtestB , and then the par-
allel processing of the other three specified directories.Parallelism not implemented yet.

3.10 Project Makefile

Unless called with the-noproj option, tmk will go from the current directory upwards until
it reaches/ or finds a file namedTMakefile.project . This file will be processed before
the localTMakefile in order to allow project-wide “global” definitions and functions.
During parsing of the project makefile,tmk will set the current working directory to that of
the project file. So it is very easy to store the project root directory in a variable like this:

set PROJDIR [pwd]

If you want to use an alternative file, you may explicitly specify a project makefile by means
of the command line option-proj <filename> .

Set setting of$PROJDIR also enables the use of a lot of mechanisms like comfortable
specification of include paths and project libraries, as defined in the default module. Please
refer to the next section for details on this topic.

21

3.11 Debugging

When you encounter an error or a strange behaviour that you (or your systems administrator)
cannot explain, you may want to try the-debug option oftmk . This causestmk to output
lots of verbose comments about what it is acutally doing and why. The best way to debug
a tmk session is to pipe the debugging output into a file and then search in this file using
a text editor program. For example, if you’re using the EMACS system, you can starttmk
-debug using the compile command and then look at the output in the resulting EMACS
buffer.

First, tmk gives some information about the configuration it uses, e.g.:

tmk: [dbg] machine: mips sgi IRIX 6.5 UNIX

Then it tells which files are being read and processed, what the project directory is set to, and
so on:

tmk: [dbg] found /usr/htschirm/proj/IBR/TMakefile.proj
tmk: [dbg] setting PROJDIR to /usr/htschirm/proj/IBR
tmk: [dbg] found /usr/htschirm/proj/IBR/TMakefile.priv
tmk: [dbg] reading module /usr/htschirm/proj/tmk/modules/default.tmk
tmk: [dbg] ----- begin processing /usr/htschirm/proj/IBR/TMakefile.proj -

tmk: [dbg] reading module /usr/htschirm/proj/tmk/modules/newclass.tmk
tmk: [dbg] ----- end processing /usr/htschirm/proj/IBR/TMakefile.proj -

tmk: in directory /usr/htschirm/proj/IBR/filter/single
tmk: [dbg] ----- begin processing TMakefile -----
tmk: [dbg] reading module /usr/htschirm/proj/tmk/modules/cxx.tmk
tmk: [dbg] adding target/rule *.o <- {$ROOT.C}
tmk: [dbg] reading dependency files..
[...]

Furthermore,tmk protocols every target or dependency that is being added, and it also shows
the dependencies that are excluded via$DEPENDEXCLUDE. So if you’re tracking some
special file for which the building process does not seem to work, you can simply search for
the filename in the output protocol, and you will see in which dependency chains and rules it
is involved. The example below shows the effect of twotarget commands and abuild
command.

tmk: [dbg] adding target/rule *.o <- {$ROOT.c++}
tmk: [dbg] adding target/rule libIBR_filter_single.so <-

toFloat.o Quantize.o Crop.o [...]
tmk: [dbg] adding default targets: libIBR_filter_single.so

22

After having built the rule database for the current directory,tmk proceeds with working
from the specified toplevel targets down to the lowest dependencies. For each target, it lists
which primary and secondary dependencies there are, and then it recursively checks all those
dependencies.

tmk: [dbg] toplevel targets: libIBR_filter_single.so
tmk: [dbg] checking target: libIBR_filter_single.so
tmk: [dbg] prim dep for libIBR_filter_single.so: toFloat.o Crop.o [...]
tmk: [dbg] sec dep for libIBR_filter_single.so:
tmk: [dbg] checking target: toFloat.o
tmk: [dbg] prim dep for toFloat.o: toFloat.C
tmk: [dbg] sec dep for toFloat.o: [...]
tmk: [dbg] toFloat.C: no matching rules/dependencies, but exists.
tmk: [dbg] Crop.o must be built because it does not exist.
tmk: [dbg] IRIX6.5/libIBR_filter_single.so must be built because

IRIX6.5/Crop.o has been updated

In the above exmaple,tmk checks the dependencies for the specified library. The source file
toFloat.C exists, and since no secondary dependency fortoFloat.o is newer than the
object file, the object file will not be rebuilt. In contrast,crop.o does not exist yet, and so
tmk is going to build it fromCrop.C . As a result of this, the library containingCrop.o
must also be rebuilt.

When checking the dependencies for the current target, tmk looks up the dependent tar-
gets in its internal cache. If it has already checked the status of that target, it will output the
“cache hit” (including the coded file modification time). If not, it will say something about
the target’s status and add it to the cache.

If tmk returns from processing the dependencies for a target, it outputs something like

tmk: [dbg] back to processing RemoveBiasScale.o

This way you should be able to find your way throughtmk ’s debugging output.

23

Chapter 4

Modules

Modules provide a way to predefine a huge number of general or specific rules and using
them effectively. A module is nothing more than a file containing statements in the same
syntax as in aTMakefile . This means it can define variables and procedures, declare rules
and dependencies, add targets to the list of to-be-built targets, produce output, and so on.
You can invoke a module by means of themodule command:

module <list of modules>

The<list of modules> may contain any number of names. For each module<name> tmk
will look for the corresponding file in the following places:

1. ./ <name>.tmk

2. for each element<path> in the list
$env(TMK MODULEPATH): <path>/ <name>.tmk

3. <directory wheretmk is installed>/modules/ <name>.tmk

The second way of specifying a module path can either be used by setting the environment
variableTMKMODULEPATHfrom the shell, or by putting a statement like

set env(TMK_MODULE_PATH) somepath/

into yourTMakefile .
For enhancing the power oftmk , it comes with a number of predefined modules which

will be described in the following sections. They all share some common features in order
to support things like automatic target generation, multiple-architecture support, etc. Some
modules do their work if you just call them, others allow to configure them via global vari-
ables before or after calling them.

24

4.1 Thedefault Module

By default,tmk activates the moduledefault which can be found in thetmk installation
directory undermodules/default.tmk . This script sets up some global variables and
basic routines in order to provide features like target generation for static and shared libraries.

The first thing the default module does is to set some useful variables concerning the
current working directory and the project directory:

• $PROJDIR: this is set by thetmk core; it is the absolute path of where theTMake-
file.proj has been found, or simply the current working directory if no project file
could be found.

• $PROJROOT: the parent directory of$PROJDIR

• $SUBDIR: the path of the current subdirectory, relative to$PROJROOT

• $DIRTAIL : the last component of the current working directory

So for example, if you’re in a directory

/home/myname/proj/myproj/a/b/c ,

and the project makefile was found inmyproj , then the following values will be set:

set PROJDIR /home/myname/proj/myproj
set PROJROOT /home/myname/proj
set SUBDIR myproj/a/b/c
set DIRTAIL c

4.1.1 Automatic Target Generation and Exclusion

Automatic target generation means that sometmk modules likeC andc look for source
code files in your directory and automatically append the corresponding.o files to the$AU-
TOTARGETSvariable. For example, thecxx module will look for all files with any of the
suffixes listed in$CCEXTENSIONSand will register the corresponding.o files as automatic
targets. You can switch this mechanism on and off by setting the flag$MAKEAUTOTARGETS.
The default is on. All modules which support this feature will append their module-specific
targets to the$AUTOTARGETSvariable. Lateron, the$AUTOTARGETSlist is used for more
mechanisms like library generation, automatic linking, and so on (cf. next section).

If tmk is called with an explicit target argument, the automatic target detection proceeds
as usual, but only the explicitly listed targets will be built.

In order to exclude some files from being processed as an automatic target, you may set
the $EXCLUDEvariable to any target you do not want to have included in the automatic

25

target list. Please note that in the case of compiler targets, you must specify the object file
(e.g..o) as an autotarget, not the source file (like.C).

After theTMakefile is completely processed, a default module procedure (set up using
beforeBuilding , cf. Sec. A.2) will automatically remove the$EXCLUDEtargets from
the$AUTOTARGETSlist.

4.1.2 Library Specification

The tmk default module provides some mechanisms for specifying libraries which should
be linked with the executables (or even with the generated libraries) in the current directory.
For “external” or “system” libraries, you must provide the symbolic library names and (if
needed) a list of paths in which to search for those files:

lappend LIBPATH $env(HOME)/mylibs
lappend SYSLIBS m xt mylib1 mylib2

In this example (and for IRIX systems),tmk will first search for the fileslibm.so , libm.a ,
libxt.so , libxt.a , libmylib1.a , . . . , in the paths specified in$LIBPATH. Each file
that will not be found in any of the$LIBPATH directories will be searched for by the linker
in its default locations.

The problem with this way of library specification is that there may not be two libraries
with the same name, since the linker would always find the first one in the path and then
try to resolve all symbols using that library. So when usingtmk , “project”, or “internal”,
libraries are automatically assigned names which are unique within the complete project tree.
For example, if you have created a library in some directorya/b/c/ (relative to the root of
the project tree), you can specify that library uniquely by the command

lappend PROJLIBS a/b/c

This tells tmk to look in the directorya/b/c for a library calleda b c . This way most
ambiguities are avoided easily. For example, if you’re using the architecture-dependent com-
pilation (targets are put into an$ARCHdirectory) and if you’re on an IRIX system, the actual
library file nametmk will look for is

$PROJROOT/a/b/c/$ARCH/liba b c.so

for a shared library, or

$PROJROOT/a/b/c/$ARCH/liba b c.a

for a static library.
In order to make the specification of libraries complete, there are two more parameters.

The variable$LINK MODEspecifies one of four possible linking modes. The choices are
“static only”, “sharedonly”, “static first”, and “sharedfirst”, depending on whether you

26

want to enforce the use of static or shared libs, or whether you want to give a preference (e.g.
if a shared version of a lib exists, then link that one; else link the static version). If the flag
$LINK LIB TWICEis on, then all libraries will be specified twice for each link command.
This helps resolving most of the problems with inter-library dependencies.

So a complete specification of libraries for a linking command needs five parameters:

• system lib path

• system lib names

• project libs

• link mode

• link-twice flag

The function LIBSPEC takes these five parameters and compiles them into alibrary speci-
fication list, as it is done with$LIBPATH, $SYSLIBS, $PROJLIBS, $LINK MODE, and
$LINK LIB TWICEfor the default targets.

4.1.3 Multiple Project Locations

The default module also provides a way of linking project libraries from different project
locations. That means that you can have parts of the project in your home directory, and
other parts reside in some central directory which is shared by all users of those project
parts. tmk will automatically link libraries from the central version whenever it does not
find the corresponding project subdirectory in you primary project tree.

The location of the primary project tree is defined by the$PROJROOTvariable, which is
set according to the parent of$PROJDIR, the directory where you project makefile has been
found. In addition, you may set the variable$PROJLOCATIONSto an arbitrary number of
paths pointing to different project root directories.

For generating dependencies and for the linking of every single project library($PROJLIBS),
the default module will look for the corresponding project subdirectories (not including
$ARCH) in the $PROJROOThierarchy first. If the directory is found, thentmk will as-
sume that this project lib has to be there lateron. If not, thentmk looks in the directory
hierarchies specified by$PROJLOCATIONS, proceeding in the specified order. The first
project subdirectory that actually exists will be used for the dependencies and linking.

Note that if you change the location of some part of your code tree, you usually will have
to rebuild all dependency files, since these contain absolute paths due to performance issues.
You can do this by simply building thedepend pseudo-target.

27

4.1.4 Local Library Generation

After the TMakefile has been parsed, thedefault module removes all those targets
from $AUTOTARGETSwhich are specified via$EXCLUDE. Then, it extracts all object files
from $AUTOTARGETSand stores them in the$AUTOOBJ list. Next,$PROGOBJ is cre-
ated, containing the object files corresponding to the targets specified in$PROGRAMS. Fi-
nally, the object files to be put into the library ($LIB OBJ) are determined by choosing those
files from$AUTOOBJwhich are not contained in$PROGOBJ.

Depending on the flags$MAKESTATIC LIB and$MAKESHAREDLIB , tmk creates
a static and/or static library in the current directory, containing the$LIB OBJ object files.
If the flag$LINK LIB INTO LIB is on, then the libraries will be linked with additional li-
braries, as specified by the variables$LIBPATH, $SYSLIBS, $PROJLIBS, $LINK MODE,
and$LINK LIB TWICE(cf. Section 4.1.2).

The name of the libraries is determined by the path from the project’s parent directory
down to the current subdirectory. For example, if you’re in the directorymyproj/a/b ,
the libraries will get the symbolic namemyproj a b. The actual filename depends on the
operating system. For IRIX, the static lib would be calledlibmyproj a b.a , and the
shared liblibmyproj a b.so .

The result of this mechanism is that as default, there will be one (shared) library in each
subdirectory of your project, each containing the functionality of that directory. This can be
used very conveniently to put together your code piece by piece, since the libraries can be
identified uniquely by position in the code tree

4.1.5 Executable Generation

As mentioned before, the variable$PROGRAMSwill specify which executables shall be built.
For every executable (e.g.x), one target will be generated which links the object file (x.o)
with the libraries specified by$SYSLIBS, $PROJLIBS, etc. (cf. Sec. 4.1.2), plus the local
library containing all the other object files from the current subdirectory (cf. Sec. 4.1.4). If
no local library is built (e.g. both$MAKESTATIC LIB and$MAKESHAREDLIB are 0),
then the executable will be linked with the object files directly1.

4.1.6 Default Module: Example

Let’s assume the following settings:

set SUBDIR a/b/c
set MAKE_SHARED_LIB 1
set MAKE_STATIC_LIB 0
set LIBPATH {path1 path2}

1Actually, this is currently not implemented, but will be provided on request. Sorry.

28

set SYSLIBS {m xt}
set PROJLIBS {a/x/y/c a/x/z}
set LINK_MODE "shared_first"
set LINK_LIB_TWICE 1
set LINK_LIB_INTO_LIB 1
set PROGRAMS {exec1 exec2}
set EXCLUDE {c.o}
module C

Now let’s assume further that there are the source filesexec1.C , exec2.C , a.C , b.C ,
and c.C. Now theCmodule will set

set AUTOTARGETS {exec1.o exec2.o a.o b.o c.o }

with rules for compiling the.C files into.o files. Thedefault module now sets:

set AUTOTARGETS {exec1.o exec2.o a.o b.o}
set AUTO_OBJ {exec1.o exec2.o a.o b.o}
set PROJ_OBJ {exec1.o exec2.o}
set LIB_OBJ {a.o b.o}
set libspec [LibSpec {path1 path2} {m xt} {a/x/y/c a/x/z}\

"shared_first" 1]

With these definitions at hand, it will generate the following top-level targets:

• make shared libliba b c.so containing$LIB OBJ, and link it with the libraries
specified by$libspec .

• make executablesexec1 andexec2 from the filesexec1.o andexec2.o , rep-
sectively. Link them withliba b c.so and the libs given by$libspec .

4.1.7 Enforce Building of a Target

Sometimes, you may want to enforce the building of a certain target. One way of doing this
is to create a target without dependencies, e.g.

target x {} {... }

Anyway, sometimes the target in question will need some argumenty passed as dependency.
So in this case the above example cannot be applied. For this purpose the default module
defines the pseudo targetforce rebuild which can be used to enforce the creation of
targetx like this:

target x {y} {... }
depend x force building

29

4.1.8 Cleaning Up

The default module defines the default targetclean , which is used for cleaning up all
automatically generated and temporary files in a directory. If you’re not using the multiple
architecture support ($USE ARCHis 0), tmk executes the command

rm -rf [glob -nocomplain $CLEAN_PATTERNS]

If $USE ARCHis 1, then the command reads

rm -rf [glob -nocomplain $ARCH/ $CLEAN_PATTERNS]

If you also want other files to be deleted when callingtmk clean , simply append them to
the$CLEANPATTERNSvariable, e.g.

lappend CLEAN_PATTERNS *˜

4.1.9 Regenerating File Dependencies

Another important target is defined for updating all dependency files for all targets. This can
be necessary when due to a version update depencies change from one file to another one
(e.g. by renaming an include file). Thedepend target is a pseudo-target which basically
does nothing. For each object file$xyz.o to be generated, the language modules (likec and
cxx) will append dependency-generation targets$xyz.depend to the $AUTODEPEND
list. The default module then excludes dependency files correspdonding to targets in the
$EXCLUDElist, and for each remaining dependency target, makes this target a prerequisite
of the globaldepend target, e.g.:

depend depend xyz.depend
depend xyz.depend force_building

The second line (cf. Sec. 4.1.7 has to be specified to make sure that the dependency will be
generated ifdepend is built, regardless of the file’s status or age.

The language modules have to define thexyz.depend target’s functionality, because it
depends on the compiler and other language-dependend things how to update the dependency
files. In the end, you can update all dependency files by simply calling

tmk depend

in the corresponding directory tree.

30

4.1.10 default Module Internals

This section presents some basic functions and variables provided by thedefault module.
You can use these to easily define targets (executables, libs, shared objects) which do not fit
in the default pipeline, but use the same basic routines.

Sorry, the functions are not documented here yet. Please have a look into the filede-
fault.tmk for more details.

• READDEPENDENCIES

• UNIQUEL IBNAME

• L IBSPEC

• MAKETARGET *

• FILENAME *

• SEARCHINPATHL IST

• FINDL IB

• FINDPROJL IBDIRECTORIES

4.2 c and cxx : C/C++ Compilation

Thec andcxx modules provide methods for compiling C and C++ code and automatically
generating all corresponding targets and dependencies in the current directory.

4.2.1 Compilation and Dependencies

First, the modules define general rules for compiling a C/C++ source file into an object file.
For every source file extension$EXT from the list$CEXTENSIONS/ $CCEXTENSIONS,
the following rule is crested:

target *.o $ROOT.$EXT {
$C $CFLAGS $C_MDEPENDENCIES -c $SRC -o $TARGET

}

For C++, simply replace nearly allC’s by CC’s. The source file$SRCin this case will be the
C/C++ file, and$TARGETwill expand to the object file to be created in the$ARCHdirectory.
The $CC MDEPENDENCIESvariable contains an expression which will be evaluated in
order to generate the compiler’s command line options for writing the dependencies into the
right dependency file.

Next, rules are generated for renewing a target’s dependency file:

31

target *.depend $ROOT.$EXT {
$C $CFLAGS $C_MDEPENDENCIES $C_DEP_ONLY -c $SRC -o $ROOT.o

}

For any targetx , the corresponding targetx.depend will be in charge to re-generate the
dependency file. The$C DEPONLYvariable is a compiler switch for not actually compiling
the code, but only generating the dependencies.

Now, for manually generating a target for a source filex.C , only one function call is
needed:

MakeTarget_C x.C

This will cause the following actions:

• if $MAKEAUTOTARGETSis on,x.o will be appended to the$AUTOTARGETSlist
(and thus,x.o will be part of the automatic library/executable linking process)

• x.depend will be appended to the$AUTODEPENDlist (cf. Sec. 4.1.9)

• if a dependency file already exists, it is read using READDEPENDENCIESin order to
generate the right dependencies withintmk (cf. Sec. 4.1.10)

The MAKETARGET C function returns the target name for generating the object file. So
if you want to build an object file manually, just do something like:

build [MakeTarget_C x.C]

Depending on the project parent directory$PROJROOTdefined by the location of the
project makefile (cf. Sec. 3.10), thec andcxx modules will automatically add the include
path option-I$PROJROOT to the compiler flags. If$PROJLOCATIONSis specified, one
additional--I statement will be generated for each specified path. This way, include files
may be specified relative to the project root directory, regardless of where the corresponding
subdirectory is actually located. The proper include statement for an include filed.h in the
subdirectorya/b/c in projectmyproj looks like this:

#include <myproj/a/b/c/d.h>

The compiler will always choose the file in the first project subdirectory among the$PRO-
JROOT/$PROJLOCATIONSpaths that can be found. This way, the include paths do not
need to be changed when the project home moves, and on the other hand the include files as
well as the libraries are identified uniquely by the path relative to the project root.

32

4.2.2 Automatic Target Generation

In addition to just defining the rules for C/C++ targets, thec andcxx modules automatically
detect the source files in the current directory, and call the MAKETARGET C function for
those detected source files.

The variable$CEXTENSIONS($CCEXTENSIONSfor C++) contains all extensions
which are assumed to be used for C (C++) code files. At the moment of callingmodule c
or module cxx , tmk will look for files with these extensions and automatically call the
MAKETARGET C fucntion for generating object file and dependency targets and updating
the$AUTOTARGETSlist, if $MAKEAUTOTARGETSis 12. As usual, target files (.o) listed
in $EXCLUDEwill not be built.

C++ and Templates

An important issue for compiling C++ code is how to design your code and Makefiles in
order to employ meta-code mechanisms as for example templates. Templates introduce a
whole number of new constraints and problems to the traditional C++ compilers and linkers,
and so this topic is worth an extra amount of consideration.

For the MIPSpro C++ compilers, it is important to obey the following rules in order to
make templates work together with libraries and complicated code trees:

• Use a consistent naming scheme. Most importantly, if a template is declared in a
file file.h , the template implementation (if there is any non-inline code) will be
searched by the compiler in the filesfile.C , file.cpp , and under similar names.
Please consult your compiler manual pages for details.

• Since templates are normally instantiated when they are needed, it may happen that
some program using a library may require some library code to be “recompiled” by
the prelinker in order to generate template instances for the user program. In order to
do this, the prelinker must find thesource filesof that library. If all include files are
specified using the project-relative paths as discussed above, the prelinker will be able
to find all include files and the corresponding source files.

• You should always use the compiler options-ptnone and-prelink when com-
piling C++ code. This ensures that templates will not be instantiated too often for the
same program.

• If the flag$CC PERLINKERis on, theC module automatically patches the MIPSpro
compiler’sii files in such way that theprelinkerwill always run the compiler with

2Please note that in order to change the file extensions used for generating the targets, you must mod-
ify $CEXTENSIONS/ $CCEXTENSIONSbeforecalling themodule statement. The best way to change
the default extensions is to set$CEXTENSIONSand/or$CCEXTENSIONSin the project makefile,TMake-
file.proj .

33

the-DCCPRELINKoption. When compiling in “normal” mode,-UCCPRELINKwill
be used. This provides a simple means of writing code that is compiled only during
the prelinking phase or only during the “real” compilation phase, for example by using

#ifndef CCPRELINK
... code which will NOT appear during prelinking ...

#endif

4.3 qt : QT Library / Precompiler

The qt module supports the automatic precompilation of QT-specific header files into so-
called “meta object” C++ code. Also, it appends the QT-specific library path to the$LIB-
PATHvariable, and include paths to$CCFLAGS.

Depending on the value of$QTDIR, theqt module will append the--I$QTDIR/include
to the$CCFLAGS, and$QTDIR/lib to the$LIBPATH variable.$QTDIR, if not manually
specified by the user, is set depending on the flavoursN32 andN64.

For precompiling the QT header files, the$QTPATTERNSvariable contains glob-style
patterns determining which files are supposed to be QT-specific header files. Currently,
$QTPATTERNSis set to

*.qt.hh *.qt.H qt*.hh qt*.H qt*.h++ *.qt.h++ qt*.h *.qt.h

All header files matching one of these patterns will be precompiled by the meta object com-
piler moc using the command

cmd $QTMOC $MOCFLAGS -o $TARGET $SRC

where$SRC is the header file, and$TARGETis the target C++ file name, which is the
rootname of the header file, plus.moc.C . The corresponding.moc.o file is added to the
automatic targets list$AUTOTARGETS. $QTMOC, if not set otherwise by the user, is set
to $QTDIR/bin/moc . $MOCFLAGSis initialized with -p [pwd] , which is a necessary
workaround when generating targets in a different directory, like in$ARCH/.

4.4 yacc : Parser Generator

YACC stands for “yet another compiler-compiler” and is a tool for generating a parser (in C
code) from a grammar. Theyacc module provides rules for generating C/C++ code from
grammars, detects the grammars and registers the corresponding automatic targets.

Before calling theyacc module, you may choose the file suffix which indicates a gram-
mar file totmk by setting$YACCSUFFIX. Similarly, you can modify the suffix of the code

34

and header files to be generated by setting the variables$YACCSUFFIXCand$YACCSUF-
FIX H. The defaults arey , C, andhh .

The yacc module generates rules for generating a header and a C code file from each
grammar. To this end, it calls the command$YACCwith options$YACCFLAGS. Since the
resulting header file will have the wrong name,tmk will rename the header file as desired.
Both the.C and the.hh file will be placed in the$ARCHdirectory (if $USE ARCHis on).
For each translated grammar, the corresponding object file (.o) will be added to the list of
automatic targets (cf. Sec. 4.1). etc.).

The default$YACCis /bin/bison -y . The default$YACCFLAGSare-d .

4.5 lex : Lexicographical Analyzer

Lex is a lexicographical analyzer, usually used in conjunction with a parser generator like
YACC (cf. Sec. 4.4). Thelex module generates rules for translating alex description file
into a C code file. The suffix of the lexicographical file can be set via$LEXSUFFIX before
calling the module. The suffix of the code file to be generated can be set via$LEXSUF-
FIX C. The command to be called can be modified (at any time in theTMakefile) via
$LEX and$LEXFLAGS. The defaults are

• $LEX = flex ,

• $LEXFLAGS=

• $LEXSUFFIX = l ,

• $LEXSUFFIX C= C

Since the lex file usually needs the include file generated by the parser generator like
YACC (cf. Sec. 4.4), the module adds$ARCHto the the include path for the C and C++
compilers (if$USE ARCHis on).

4.6 doxygen : C/C++ Documentation Generation

Doxygen is a system for automatically generating HTML, LATEX, and manpage documenta-
tion from C++ files3. Doxygen uses a configuration file containing several variables which
define where to look for the source files, which files to consider, how to name the project,
and so on. Unfortunately, this configuration file is static, meaning that there is no way of us-
ing environment variables or similar mechanisms inside the Doxygen configuration file. In
order to bypass this inconvenience,tmk will modify the config file on the fly before calling
doxygen .

3seehttp://www.stack.nl/ d̃imitri/doxygen

35

In order to create a documentation for your projectmyproj , you simply add a subdirec-
tory (e.g.myproj/doc) and write aTMakefile like this:

module doxygen
set DXX_PROJECT_NAME "Name-of-my-Project"
set DXX_INPUT "$PROJDIR"
set DXX_FILE_PATTERNS "*.h *.hh *.H *.h++ *.hpp *.hxx *.doxy"

The first line instructstmk to load the Doxygen module. The module will do the following
things prior to actually generating the documentation:

• generate a Doxygen config file named$ARCH/$DOXYFILE INPUT, using the$DOXY-
GEN -g command

• for eachtmk variable$DXX SOMEVAR, it will replace the corresponding variable
definitionSOMEVAR = <something> in the config file by the definition provided
in theTMakefile .

• write the “patched” config file to$ARCH/$DOXYFILE

This simple mechanism allows to use thetmk variables directly for configuring Doxygen.
Since theTMakefile is used as the “true” config file, the steps described above will be
performed whenever theTMakefile is newer than the Doxygen config file.

The module generates the following targets:

• doc: generate HTML, LaTeX, and manpages. This is the default target when calling
tmk without arguments. If you do not want to generate all versions of the documenta-
tion, you may set some of the variables$DXX GENERATEHTML, $DXX GENERATELATEX,
and$DXX GENERATEMANto "NO" .

• ps: first build targetdoc , and then callmake refman.ps in the LATEX subdirectory
in order to generate a Postscript version of the reference manual.

The documentation will be generated in the directorieshtml,latex,man in the$ARCH
subdirectory. This is quite convenient because Doxygen contains a C++ preprocessor which
can generate macro definition-dependent documentation.

4.7 newclass : Generate Files From Templates

newclass simplifies the creation of header files for new class definitions. Usually, only
a single class definition is placed in a header file. So it makes sense to use a template for
header files which contains some project-specific header as well as the basic class definition
code. If you put the line

36

module newclass

in yourTMakefile.proj (cf. Sec. 3.10), you may call

tmk newclass

in any of your project subdirectories.tmk will ask you for three things:

• the name of the class to be defined

• the template argument list (optional)

• a brief description of the classes’ purpose

Then,tmk looks for all template files it can find, expands certain expressions in those tem-
plate files, and creates new code files in your directory.tmk looks for all template files
$NEWCLASSTEMPLATE.*. $NEWCLASSTEMPLATEdefaults to$PROJDIR/newclass .
The resulting files are named after the class, plus the suffix of the template file.

The template file may contain any number of (non-nested) expressions of the form

[@@ expression @@]

Theexpression will be expanded by a TCL[eval] command, and the whole expres-
sion will be replaced by the expanded expression. If your expression contains spaces, you
should place it within double quotes.

In addition to this general mechanism, the following variables will be set in addition to
all othertmk global variables:

• $CLASSNAME: name of the class

• $DESCRIPTION: brief description of class

• $FILENAME: full name of the file to be written

• $SUFFIX : suffix of the file to be written

• $TEMPLATEARGS: template argument list, e.g.int N, typename T , possibly
empty

• $TEMPLATETYPE: template argument list enclosed in<>, e.g.<int N, type-
name T; empty string if$TEMPLATEARGSis empty

• $TEMPLATEDEF: template definition code, e.g.template<int N, typename
T>, possibly empty.

• $USERNAME: the result of thewhoami command

37

• $CREATOR: the user’s full name (inferred from thepasswd entry)

• $CVSID: simply expands to$Id$

• $CVSLOG: simply expands toLog

If the variables$CLASSNAME, $TEMPLATEARGS, and$DESCRIPTIONare set man-
ually, the user will not be asked for those values. This is useful for “misusing” the module
for other, similar tasks.

4.8 dist : Make Executable Distributions

With the dist module, you can generate a distribution of everything that is needed for
“giving away” a standalone executable. This is non-trivial as soon as you’re using shared
libraries, or dynamic shared objects which are linked dynamically at runtime. You also may
want to include example files or non-standard libraries in your distribution, and the resulting
software should be able to run in any directory that it is put into. To this end, thedist
module does the following:

• examine the executables you want to distribute, and find all shared libs needed to run
them

• copy the executables and all used libs from within the project tree(s) and from other
specified directory trees

• create a wrapper for each executable, so that the executable will run and find its li-
braries in any environment

It is possible to use some subdirectory in an existing project or create a ’dist’ project
in your project tree. In the latter case, you will need to define a (possibly empty)TMake-
file.proj . Then, in order to create a certain distribution, the most important lines of code
in you tmk are

module dist
lappend DIST TARGETS a/b/c/$ARCH/myexec

This tellstmk to copy the executablemyexec for the current architecture from the project
directorya/b/c . If you specify an absolute path,tmk will take the specified executable
directly. If you specify a relative path,tmk assumes that you specify some executable in
a project tree, and will look for the corresponding directory in$PROJROOTas well as in
$PROJLOCATIONS(cf. Sec. 4.1.3).

With the selected executable,tmk will use theldd system command to determine which
shared libraries are needed by the executable. Then,tmk determines which of these libraries
are either

38

• in the directory tree below$PROJROOT(cf. Sec. 4.1),

• in a directory tree below any of$PROJLOCATIONS(cf. Sec. 4.1.3),

• or below any directory specified in$DIST COPYLIB DIRS

This last variable is empty by default and can be set in the distributionTMakefile . The
$PROJLOCATIONSare usually set in theTMakefile.proj .

Those libraries which satisfy any of the above conditions will be considered as “copy-
worthy” for the distribution, and thedist module will create targets to copy the files if they
are newer than the current ones in the distribution.

The directory structure in the distribution target directory looks like this:

• $ARCH/$DIST BIN/ : executables and the wrapper script

• $ARCH/$DIST LIB/ : libraries and shared objects

• default names:bin andlib

This means that you can modify the structure by setting the corresponding variables.
Apart from the executable(s) and the necessary libraries, you may want to copy additional

files into the distribution. This can be done easily by using thedist copy command, e.g.:

dist copy lib $PROJROOT/a/x/y/$ARCH/some obj.so
dist copy doc $PROJROOT/a/b/doc/README.txt

The dist copy command creates targets to copy files if they are newer than the ones
currently in the distribution. The first argument todist copy is the target directory, relative
to the distribution directory. If the directory does not exist yet, it will be created (recursively).

The specified executable files will be copied and renamed. The variable$DIST RENAME
controls how this new name is determined, the default value is{${ITEM}.orig }. $ITEM
will later expand to the original name of the executable. Next, a wrapper shell script will be
created by the name of$DIST WRAPPER. For each executable, a symbolic link is created,
named as the original executable and pointing to the wrapper. This means that calling the
link calls the wrapper, and the wrapper then calls the “real” executable.

This mechanism allows for setting an arbitrary number of environment variables (in the
wrapper) before calling the executable. You can simply add shell script command lines to
the wrapper using thedist script command, e.g.:

dist_script "export SOME_PATH=\$DIST_PATH/lib"

The quoted shell command line will set the shell variable$SOMEPATHprior to calling
the executable. Within the script, the shell variable$DIST PATHpoints to the directory
where the distribution is currently located (which is determined by the wrapper script). This

39

mechanism is also used to set the runtime shared library search path so that libraries are first
looked up in the distribution’s library directory.

This means that as long as your software does not contain any hard-coded path names or
similar things, the complete distribution can be relocated everywhere by simply moving it.
So if you need to work with search paths or similar things within your programs, you should
take care that those paths can be set via environment variables. If that is the case, you can
always set the paths to reasonable and relocatable defaults in the wrapper script.

4.9 db : Simple Database Interface

Many automation tasks rely on some sort of database query. Therefore,tmk comes with
a small textfile-based database interface which can be used for managing small amounts of
data very conveniently. Just like theTMakefile , tmk ’s database files are simply TCL
source code files. Thedb module provides several new commands.

4.9.1 Database definition

A tmk database is a list of data records. A record is a list of fields. A field is a pair con-
sisting of the fieldname and a value. Here is an example of how to define one such record,
representing one instance of an address:

db_record {
field lastname "Mustermann"
field firstname "Erika"
field street "Bahnhofstr.˜1"
field zipcode "54321"
field city "Irgendwo"
field phone "+49 12 3456789"

}

A file containing a collection of such definitions is called a database file. Let’s assume you
have defined some records/addresses in the filemyaddr.db . Thetmk commanddb read
is used to create a database (a list of records in the main memory) from the file:

module db
set db [db_read "myaddr.db"]

The second line of code will simply execute the specified database file, and thedb record
andfield commands will append fields and records to the list that will then be stored in
the variable$db that was specified in the example.

The resulting database is simply a list of records, which each record being again a list of
fields. Each field is a pair consisting of the field name and the field’s value.

40

4.9.2 Working on the Database

You can operate on the list of records with all standard TCL andtmk commands. For more
convenience, there are some database commands for working on lists of records or on single
records.

In order to generate the right selection and order of records, there are two fundamental
database commands.

db select <database> <match-expr>

This command is used for selecting a number of records from the specified list (database).
It returns a new database.<match-expr> is some valid TCL expression which may contain
field names as variable names. This meanstmk will go through all records and, before
evaluating<match-expr> for the current record, create one variable for each valid field in
the current record, with the variable name equal to the field name. Example:

set thecity "Irgendwo"
set people_in_irgendwo [db_select $db {$city == $thecity}]

This line of code selects all records from the previous example in which thecity field
contains the valueIrgendwo . Please note that again, the expression is evaluated in the
context of the caller, so that all currently visible variables can be used.

Instead of this very simple matching expression, you can use arbitrarily complex TCL/tmk
expressions. The simplest expressions are"1" for selecting all records, and"0" for select-
ing no records.

The second fundamental command working on a list of records is used for sorting the
records. It has a similar form:

db sort <database> <sort-expr> [<order>]

This command takes a database, sorts it according to a key which is determined by the spec-
ified <sort-expr>, and returns a new database. The<sort-expr> is again some TCL/tmk
expression containing field variables. The result of this expression is used for comparing the
record to others (using ASCII comparison). The optional<order> argument defines whether
the sorting will be done in ascending or descending order ("inc" (default) or"dec"). Here
is an example:

set sorted_db [db_select $db {"$lastname__$firstname__$city"}]

This example sorts the database by the last names containes in the records. For records with
the same last names, it will the consider the first names, and finally the city.

Please note that for the field-variable expressions used in the examples above, the corre-
sponding fields must be defined in each record. Techniques to make sure that certain fields
are always defined are discussed in the section aboutAdvanced Record Definitions.

41

4.9.3 Working on Single Records

After selecting and sorting the database, you obtain a list of records. Again, you can oper-
ate on this list with the standard TCL/tmk commands in order to do something with each
record or some of the records. After you obtain a single record from the list, the most basic
command to do something with that record is

db with record do <record> <command>

This command allows you to execute any TCL/tmk code ’on’ the specified record. This
means that, like for the matching and sorting expressions mentioned in the previous section,
tmk sets one variable for each field of the record, with the variable name matching the field
name. Example:

foreach rec $sorted_db {
set last_city "<undefined>"
db_with_record_do $rec {

if { ($last_city != "<undefined>") && \
($city != $last_city) } {

puts stderr "---"
}
puts stderr "$lastname, $firstname, $city"
set last_city $city

}
}

This example goes through all records of$sorted db and outputs a line containing name
and city in the record. In addition to that, it separates records from different cities by a short
line.

If you want to create new database files from old ones, you can do this by simply writing
a new file and then writing records into that file using thedb output record command,
e.g.:

set f [open "sorted_addresses.db" w]
puts $f "# this file has been generated automatically"
foreach rec $sorted_db {

puts $f [db_output_record $rec]
}
close $f

Thedb output record command will write the record in the form in which it is needed
for thedb read command. For printing a record on the screen (to be read by a user) you
may usedb format record , which will print the record in a more readable form.

If you want to access a single field of a single record, you may use another command for
convenience:

42

db value <record> <fieldname>

returns the value of the specified field in the specified record.

4.9.4 Advanced Record Definitions

So far, we have relied on the assumption that all kinds of fields needed in our sorting and
selection expressions are actually defined in each record. Since it is not easy to ensure this, it
might be more convenient to define default values for some fields so that there won’t be any
problem if some record does not define the field. Also, you may want to make use of some
common definitions etc., and you may want to construct “compound” fields automatically
which combine the contents of several simple fields. There are two constructs for making all
this possible:

db record header <script>

db record cons <script>

The “header” script will be executed at thebeginningof each record definition, and the
“constructor” will be executed at theend, after parsing all the commands in adb record
procedure. So you can define default field values as well as shortcuts in the header, and
construct compount fields and perform integrity checks in the constructor. Every ’field’
command will cause the corresponding local variable to be set to the value of the field. Here
is an example:

db_record_header {
field firstname ""
field lastname ""
field street ""

}

db_record_cons {
field name "$lastname, $firstname"
if {![info exists city]} {

set rec [db_format_record $therecord]
__ExitErr "must specify a city in $rec"

}

}

As you can see in the above example, the variable$therecord is reserved and con-
tains all fields defined so far for the current record. You can output it via the functions
db format record or db output record .

43

4.10 latex : Using LaTeX, BibTeX etc. (experimental!)

TheLATEX module is thought for automating the task of compiling LATEXsource files into DVI,
Postscript, or PDF documents. In order to do so, the module has to generate several types
of dependencies and calllatex a number of times in order to make sure that all references
etc. are properly resolved. The module accomplishes this by doing the following:

• Detect all “main” LATEXfiles by looking for files matching*.tex and searching for the
code\begin{document} (with some whitespace characters allowed in between).

• Generate dependencies to included LATEX files by parsing\input statements.

• Generate dependencies to bibliography databases by parsing\bibliography state-
ments.

• Analyse the output of alatex invocation in order to determine if there remain unre-
solved references or citations. If unresolved references occur, runlatex again. For
unresolved citations, if the used bibliography databases are newer than the LATEXsource,
runbibtex and then runlatex again twice.

The parsing mechanism used for\input and \bibliography statements is very
limited. For example, it cannot resolve macros or similar things. Also, it will only look for
files in the paths specified in thetmk variables$TEXINPUTS and$BIBINPUTS . If the
corresponding environment variable is set,$TEXINPUTS is set to$env(TEXINPUTS) ,
and the path separators “:” are replaced by whitespace in order to obtain a TCL list. If
the environment variable is not set,$TEXINPUTS defaults to"." . The same applies to
$BIBINPUTS .

The module defines rules for compiling.tex into .dvi , .dvi into .ps , and.ps into
.pdf . Corresponding to the values of$USE AUTODVI , $USE AUTOPS, and$USE AUTOPDF,
the LATEX sources will be compiled into DVI, Postscript, and PDF documents. All targets are
generated in the local directory, not in the$ARCHdirectory (even if an empty$ARCHdirec-
tory will be created).

The used programs are determined by the variables$LATEX, $BIBTEX , $DVIPS, and
$PSTOPDF. Flags can be set via$LATEXFLAGS, $BIBTEXFLAGS, $DVIPSFLAGS, and
$PSTOPDFFLAGS.

When callingtmk clean , the variable$LATEX CLEANSUFFIXES determines the
files to be deleted. The default is

*.dvi *.aux *.log *.bbl *.blg *.toc

The variables$LATEX UNDEFREF and $LATEX LABELS CHANGEDdetermine which
messages will cause the module to rerunlatex or callbibtex .

44

4.11 Writing Your Own Modules

Sorry, no useful tips yet.

45

Chapter 5

Installation and Configuration

5.1 Installing tmk on your system

Installingtmk is very easy. Just copy the files into your favourite directory. Thetmk source
tree consists of three directories:

• src/ : thetmk script source file

• modules/ : the module script source code

• doc/ : the documentation TeX/dvi files

To install tmk on your system, just change the code line setting the variable$ TmkDir in
thetmk script, and include thesrc/ directory in your shell’s$PATHvariable.

5.2 Configuring tmk

46

Appendix A

Misc tmk Functions and Variables

A.1 List Operations

Since most of the operations intmk modules andTMakefile ’s deal with lists of file names,
it is useful to have some basic list operations at hand.

• lindex <list> <n>: picks the n’th item from a list [std. TCL]

• lappend <listname> <elements ...>: appends any number of elements to a list
variable

• lrange <list> <n1> <n2>: creates the sublist including all elements from index
<n1> to <n2>. May use “end” as placeholder for the last element of the list. [std.
TCL]

• lfilter <list> <T-expr>: copies into a new list all those items for which the T-
expression is true. T-expressions are explained below. Example:

set x [lfilter "a ab c d e" {[string match a* $ITEM]}]
-> x = "a ab"

• lmap <list> <T-expr>: creates a new list, containing the results of evaluating the
expression for every item of the list and concatenating it to the return value list. T-
expressions are explained below. Lists are decomposed once so that it is very easynot
to generate lists of lists. Example:

set x [lmap "a b c" {$ITEM $ITEM}]
-> x = "a a b b c c"
set x [lmap "a b c" {[list [list $ITEM $ITEM]]}]
-> x = "{a a} {b b} {c c}"

47

• lminus <list1> <list2>: subtracts<list2> from<list1>. Example:

set x [lminus "a b c d d e e" "x y d"]
-> x = "a b c e e"

• lremove <list><pattern>: remove all elements from<list>which match<pattern>.
Example:

set x "ax bx by ay"
lremove x "a*"
-> x = "bx by"

• lcontains <list><elem> tells whether<elem> is contained in<list>. Example:

set x [lcontains "a b c d d e e" "a"]
-> x = 1

The above-mentioned T-expressions are similar to those you can use within atarget
statement, except that the special variable names are a little bit different, and the expression
is evaluated in the context of the caller of the list operation. You may use the following
special variables within such a T-expression:

• $ITEM: the full name of a single list element

• $IROOT: all characters of$ITEM up to (but not including) the last dot (cf. TCL com-
mand[file rootname $ITEM])

• $IEXT : all characters from the last dot on, or the empty string if name contains no dot
(cf. TCL [file extension $ITEM])

• $IDIR : all characters up to the last slash, or ’.’ if there are no slashes in the name (cf.
TCL [file dirname $ITEM])

• $ITAIL : all characters after the last slash, or the empty string (cf. TCL[file tail
$ITEM])

• $IBASE : all characters after the last slash and before the last dot (cf.[file root-
name [file tail $ITEM]])

A.2 Execution, Logging, and Debugging

• assert <condition>: evaluates the condition on the current level and exits with an
error if it does not evaluate to 1.

48

• cmd <args>: performs a[eval exec <args>] at the global execution context
(uplevel #0). This implies that the first of the arguments will be executed as a
command in a shell, using all further arguments as its parameters values. The addi-
tional [eval] statement sees to that one single list of arguments will be generated,
even if<args> contains one level of nested lists like$CCFLAGS. cmd will also catch
system errors, print the error message, and exittmk . Standard input, output, and error
are piped to the terminal.

• Log <msg>: outputs<msg> to the standard error channel. This is used for all im-
portant messages which the user should see even when not debugging. Log messages
can be turned off with the-silent command line option.

• Dbg <msg>: outputs<msg> to the standard error channel. This is used for all
those messages which can be helpful for debugging, but should not be printed by de-
fault. Debugging messages can be turned on with the-debug command line option.

• ExitErr <msg>: outputs<msg> to the standard error channel and terminates
tmk . If debugging is switched on, also shows a stack trace at exit time.

• SetIfUndef <varname> <value>: set variable to value if it is not defined already.

• beforeBuilding <TCL script>: In order to execute commandsafterall variables
have been set in theTMakefile , the modules make use of thebeforeBuilding
command. Sometimes it can be reasonable to use it directly in theTMakefile ,
too. The command appends the specified commands to a list. After having parsed
the wholeTMakefile , just before starting to build the first target,tmk will process
each element of that list (by means of a TCL[eval] statement) in the order of their
appearance. This provides a means of performing additional checks and computations
after all user variables have been set to their final values. This is used heavily in most
of the modules.

A.3 Target Names, File Names, Directories

• shortTargetName <target>: returns the short form of the specified target name.
This is done by removing$ARCHif it is the last part of the path before the filename
(and if $USE ARCHis set), and by removing trailing./ paths. The command is for
example useful when specifying additional dependencies via thedepend command
and the target name comes from some external program like makedepend.

• fullTargetName <target>: returns the complete target path and filename. If
$USE ARCHis set, and if the last element of the path is not$ARCH, it will be added

49

before the filename. This is useful if the target file has to be passed to some external
program outside of anytarget command.

• PathIsAbsolute <path>: tells whether the specified path is an absolute path or
not. Depending on the operating system you’re on, this can be hard to tell. On UNIX
systems, only absolute paths start with a ”/”.

• NormalizeFilename <varname>: normalizes the filename contained in the spec-
ified variable. Changes the variable and returns the resulting value. Normalizing
means making filenames comparable. For example, collapseA/B/../C to A/C
where possible.

• CreateDirRecursively <dir>: create a directory and all parent directories
which do not already exist

• SearchInPathlist <filepattern> <pathlist>: for all paths in the pathlist, return
all files which match the patternpath/$filepattern .

50

Appendix B

Index of Variables

This section lists all environment and global variables which are used by thetmk core or
by any of the standard modules. The table also lists the section where more detail about the
function of the variable can be found, and cross links to other variables or commands which
are used in the same context.

Please note that all variable names starting with a double underscore () are reserved for
thetmk core system.

Global Variables

Name Meaning Sec.

$ARCH name of the currently active architecture; see also:
$ARCHBASE, $USE ARCH

3.8

$ARGS arguments to be passed to atmk subprocess, usually the
same arguments as have been passed to the currenttmk
process.; see also:subdir command,$TMK

3.9

$AUTODEPEND list of automatically generated targets for reg-generating
dependency files; see also:$AUTOTARGET, $EXCLUDE

4.1.9

$AUTOTARGETS list of automatically generated targets; this variable is
modified by several modules; after parsing theTMake-
file , the $EXCLUDEtargets are removed from this
list and the remaning targets get built.; see also:
$MAKEAUTOTARGETS, $AUTODEPEND, $EXCLUDE

4.1.1

$C command to be executed for compiling C code; see also:
$CFLAGS

4.2

$CC command to be executed for compiling C++ code; see
also: $CCFLAGS

4.2

51

$CCEXTENSIONS list of file extensions which are supposed to mark C++
files; these are used to generate.o targets for all detected
C++ files; must be specifiedbeforecalling the CC mod-
ule; see also:$CEXTENSIONS

4.2

$CCFLAGS list of flags to be passed to the C++ compiler; see also:
$CC, $CFLAGS

4.2

$CEXTENSIONS list of file extensions which are supposed to mark C files;
these are used to generate.o targets for all detected C
files; must be specifiedbeforecalling the CC module; see
also:$CCEXTENSIONS

4.2

$CFLAGS list of flags to be passed to the C compiler; see also:$C,
$CCFLAGS

4.2

$CLEANPATTERNS name pattern list for files which should be deleted when
calling tmk clean ; additionally, the$ARCHdirectory
will be deleted if$USE ARCHis on; see also: target
clean , $USE ARCH

4.1.8

$CURRENTDIR after parsing theTMakefile : current directory relative
to $PROJDIR; see also:$PROJDIR, $DIRTAIL , de-
fault module

3.10

$DEPENDEXCLUDE list of directory patterns; dependency files matching one
of the patterns will not be checked for time-stamp or ex-
istence during building.; see also:depend command

3.5

$DIRTAIL after parsing theTMakefile : tail of the current direc-
tory (short directory name), also used as base name for
the automatic local library; see also:$CURRENTDIR,
default module

4.1.4

$DOXYFILE name of the patched/final Doxygen configuration file.;
see also: $DOXYFILE INPUT, $DXX * , doxygen
module

4.6

$DOXYFILE INPUT name of the input configuration file to be generated by
Doxygen which is to be patched bytmk ; see also:
$DOXYFILE, $DXX * , doxygen module

4.6

$DOXYGEN path/name of thedoxygen executable; see also:doxy-
gen module

4.6

$DXX * all variables starting withDXX correspond to a Doxy-
gen config variable (without theDXX prefix); the vari-
ables defined in theTMakefile will be written into
the patched Doxygen config file$DOXYFILE; see also:
$DOXYFILE, $DOXYFILE INPUT, doxygen module

4.6

$EXCLUDE list of targets to be excluded from the automatic target
generation process; see also:$AUTOTARGETS

4.1.1

$LD name of the linker command; see also:$LDFLAGS,
$LIBPATH, $SYSLIBS, $PROJLIBS

4.1

52

$LDFLAGS global flags for linking; see also: $LDPROC, $LIB-
PATH, $SYSLIBS, $PROJLIBS

4.1

$LEX program to be executed for generating code from lex-
icographical description files.; see also:$LEXFLAGS,
$LEXSUFFIX,$LEXSUFFIX C

4.5

$LEXFLAGS flags for $LEX; see also: $LEX, $LEXSUF-
FIX ,$LEXSUFFIX C

4.5

$LEXSUFFIX suffix for the lexicographical description file (default is
l). Must be set before calling thelex module.; see also:
$LEX, $LEXFLAGS, $LEXSUFFIX C

4.5

$LEXSUFFIX C suffix for the code file to be generated from a lex file.
Must be set before calling thelex module.; see also:
$LEX, $LEXFLAGS, $LEXSUFFIX

4.5

$LIBPATH list of additional library paths, will be used for generating
-L and -rpath options for the linker; see also:$LD,
$LDFLAGS, $SYSLIBS

4.1.2

$LIB OBJ after TMakefile parsing: list of .o files to be in-
cluded in the automatically generated library; consists of
all .o $AUTOTARGETS, excluding all$EXCLUDEtar-
gets and all object files in$PROGOBJ FILES ; see also:
$USE AUTOLIB , $PROGOBJ FILES

4.1.4

$LINK LIB TWICE switch on/off the duplicate linking of all libraries.; see
also: $LDPROC, $LDFLAGS, $LIBPATH, $SYSLIBS,
$PROJLIBS, $LIB LOCATIONS

4.1.2

$MAKEAUTOTARGETSswitch on/off the appending of auto-detected targets to
the $AUTOTARGETSvariable; see also:$AUTOTAR-
GETS

4.1.1

$MAKEPROGRAMS switch on/off (1/0) the automatic linking of executable
programs; see also:$PROGRAMS, $LD, $LDFLAGS

4.1.5

$MAKESTATIC LIB switch on/off (1/0) the automatic creation of a static li-
brary for each processed directory; the library will con-
tain all automatically generated object files except for
those corresponding to executable programs; see also:
$USE AUTOPROGRAMS, $PROGRAMS, $AUTOTAR-
GETS

4.1.4

$MAKESHAREDLIB like $USE AUTOLIB , but for a shared library; see also:
$USE AUTOLIB

4.1.4

$MOCFLAGS flags for the QT meta object compiler, “moc”; see also:
$QTMOC, $QTDIR, $QTPATTERNS

4.3

$MODULES list of all modules called so far; see also:module ,
$env(TMK MODULEPATH)

4

53

$PROGRAMS list of executables to be built;tmk will try to link the cor-
responding.o files with the specified system and project
libraries in order to generate executables; see also:$LD,
$LDFLAGS, $USE AUTOPROGRAMS

4.1.5

$PROGOBJ after TMakefile parsing: list of all object files corre-
sponding to an executable specified by$PROGRAMS; see
also: $MAKEPROGRAMS, $PROGRAMS

4.1.4

$PROJDIR location of the project directory and the project makefile
TMakefile.proj . If no project makefile exists, de-
faults to the current directory; see also:$PROJLIBS,
-proj and-noproj command line options

3.10

$PROJLIBS list of libraries from the current project to be
linked; a library is specified by the project direc-
tory it is in (e.g. a/b/X corresponds to$PRO-
JDIR/a/b/X/$ARCH/libX.a); see also: $PRO-
JDIR , $LD, $LDFLAGS, $LIBPATH, $SYSLIBS

3.10

$PROJROOT after parsing theTMakefile : parent directory of the
current project directory ($PROJDIR/..); see also:
$PROJDIR, $PROJLIBS, -proj and-noproj com-
mand line options

3.10

$QTDIR directory where the QT package is installed; used to infer
the location of QT libraries, include files, and the meta
object compiler; see also:$QTMOC, $MOCFLAGS, $QT-
PATTERNS

4.3

$QTMOC command to be executed in order to run the QT meta ob-
ject compiler “moc”. Default is$QTDIR/bin/moc ; see
also: $MOCFLAGS, $QTDIR, $QTPATTERNS

4.3

$QTPATTERNS list of file patterns which refer to QT header files. These
files will be precompiled bymoc into the corresponding
.moc.C files, and the.moc.o object files will be added
to the automatic targets.; see also:$QTMOC, $QTPAT-
TERNS

4.3

$SUBDIR EXCLUDE list of directory names which will not be considered for
automatic subdirectory processing; the current$ARCH/
will be added automatically.; see also:subdir com-
mand,-local command line option

3.9

$SYSLIBS list containing either single library names (short form,
e.g.mfor the math library), or sublists of the form{path
lib1 lib2 lib3... } for direct library path assign-
ment; see also:$LDPROC, $LDFLAGS, $LIBPATH,
$LIB LOCATIONS

4.1.2

54

$TARGETS list of all current toplevel targets (either specified by
build commands or at thetmk command line; see also:
build command,tmk command line options

3.1

$TMK the command to be called for recursive subdirectory pro-
cessing. Usually contains the path to thetmk executable
of the current process.; see also:subdir command,
$ARGS

3.9

$USE ARCH switch on/off (1/0) multiple architecture support; see
also:$ARCH

3.8

$YACC program to be executed for parser generation from
grammars; see also:$YACCFLAGS, $YACCSUFFIX,
$YACCSUFFIXC, $YACCSUFFIXH

4.4

$YACCFLAGS flags for $YACC; see also: $YACC, $YACCSUFFIX,
$YACCSUFFIXC, $YACCSUFFIXH

4.4

$YACCSUFFIX suffix of grammar files. Default isy . Must be set be-
fore calling theyacc module.; see also:$YACC, $YAC-
CFLAGS, $YACCSUFFIXC, $YACCSUFFIXH

4.4

$YACCSUFFIXH suffix of the header files generated from grammar files.
Default ishh . Must be set before calling theyacc mod-
ule.; see also:$YACC, $YACCFLAGS, $YACCSUFFIX,
$YACCSUFFIXC

4.4

$YACCSUFFIXC suffix of the code files generated from grammar files. De-
fault is C. Must be set before calling theyacc mod-
ule.; see also:$YACC, $YACCFLAGS, $YACCSUFFIX,
$YACCSUFFIXH

4.4

Environment Variables

Name Meaning Sec.

$env(HOME) user’s home directory; this is used to create a
.tmk directory for configuration cache files etc;
see also:tmk command, configuration

5

$env(TMK HOME) directory in which thetmk system resides; see
also: tmk command, configuration

5

$env(TMK MODULEDIR) list of paths where to look fortmk modules; see
also:module command

4

$env(TMK TCLSH) TCL shell program to be used for executing the
tmk scripts; see also:tmk command, configura-
tion

5

55

Appendix C

Index of Built-In Functions

Please note that all function names starting with a double underscore () are reserved for the
tmk core system.

56

Appendix D

Index of tmk Command Line Options

The syntax for callingtmk is as follows:

tmk <options ...> <targets...>

After listing the desired options, the user may explicitly specify any number of targets to
be built. If no targets are given,tmk will try to build all targets specified via thebuild
command in theTMakefile . Options are always preceeded by a ’-’. The available options
can be listed by invokingtmk -help :

• -help : output short message explaining command syntax

• -prf , -dbg , -std , -opt , -max : select the code level from profiling (prf) up to
maximal optimization (opt)

• -f file : use ’file’ instead ofTMakefile

• -proj file : use ’file’ as project makefile [default: search upwards in the parent
directories forTMakefile.proj]

• -noproj : do not search for any project makefile

• -priv file : use ’file’ as private project makefile [default: search upwards in the
parent directories forTMakefile.priv]

• -nopriv : do not search for any private project makefile

• -local : skip subdirectory processing

• -force : build all specified targets unconditionally (meaning even if they do not need
to be updated).

• -debug / -nodebug : toggle debugging output on/off

57

• -silent / -verbose : toggle logging output on/off

• -mfdepend : include theTMakefile as dependency for every target to be built,
so if theTMakefile has changed, all targets will be rebuilt. If you want this to be
permanent, just set the global variable$ SelfDepend to 1.

There are some more options, which are not used normally. Please use with care.

• -reconfig : causestmk to re-generate all config files for the currently active system

• -arch name : set$USE ARCHto 1 and$ARCHto ’name’. This overrides the name
of the architecture, which is normally set automatically according to the different com-
ponents of your system and to the selected code level.

• -rules : output the rule database instead of building the targets

• -cmd ’script’ : execute the TCL script prior to reading the default module and
parsing theTMakefile

• -prefix ’string’ : print the specified string before every line of output [default
is tmk:]. This is used internally bytmk , e.g. for subdirectory processing

58

