Thetmk Automation Tool

Hartmut Schirmacher, Stefan Brabec

Max-Planck-Institut @ir Informatik
Im Stadtwald, 66123 Saaiilocken, Germany
http://www.mpi-sb.mpg.de/
{schirmacher,brabec t@mpi-sb.mpg.de

note: this is an early draft version,
not consistent with currenink application

Contents

1 Introduction and Overview 4
1.1 HowtoRead ThisManual 5
1.2 TCL Basics and Expression Evaluation. 6
2 Getting started 9
2.1 C++ CompilinginaSingle Directory 9
2.2 ASimpleProjectTree. e 10
3 Thetmk core 13
3.1 Specify Which TargetstobeBuilt 13
3.2 SimpleTargetsandRules 14
3.3 Multiple Targets and T-Expressions 15
3.4 TargetPatterns 16
3.5 Specifying Secondary Dependencies 16
3.6 Resolving Multiple RulesforOne Target 17
3.7 DependencyChains 18
3.8 Multiple Architecture / Codelevel Support 18
3.9 Processing Subdirectories L e 20
3.9.1 Processing and Excluding Subdirectories 20
3.9.2 Directory-Based Parallel Processing 21
3.10 ProjectMakefile 21
3.11 Debugging 22
4 Modules 24
4.1 Thedefault Module 25
4.1.1 Automatic Target Generation and Exclusion 25
4.1.2 Library Specification o 26
4.1.3 Multiple Project Locations 27
4.1.4 LocalLibraryGeneration. 28
415 Executable Generation 28
4.1.6 Default Module: Example 28

2

4.1.7 Enforce BuildingofaTarget 29
41.8 CleaningUp e 30
4.1.9 Regenerating File Dependencies 30
4.1.10 default ModulelInternals 31
4.2 candcxx: C/C++ Compilation 31
4.2.1 Compilation and Dependencies 31
4.2.2 Automatic Target Generation 33
4.3 qt: QT Library/Precompiler 34
4.4 vyacc : ParserGenerator 34
4.5 lex : Lexicographical Analyzer 35
4.6 doxygen : C/C++ Documentation Generation 35
4.7 newclass : Generate Files From Templates 36
4.8 dist : Make Executable Distributions 38
4.9 db: Simple Database Interface 40
4.9.1 Databasedefinition oo 40
49.2 WorkingontheDatabase 41
49.3 WorkingonSingleRecords 42
4.9.4 Advanced Record Definitions oL 43
4.10 latex : Using LaTeX, BibTeX etc(experimental!). 44
4.11 Writing Your OwnModules 45
Installation and Configuration 46
5.1 Installingtmk onyoursystem 46
5.2 Configuringtmk. 46
Misc tmk Functions and Variables a7
A.l ListOperations e 47
A.2 Execution, Logging, and Debugging 48
A.3 Target Names, File Names, Directories 49
Index of Variables 51
Index of Built-In Functions 56
Index of tmk Command Line Options 57

Chapter 1

Introduction and Overview

The namdamk stands for “TCL-based make”. It tries to combine the flexibility and power of
the scripting language TClon the one hand, and the simplicity and utilityrofike? with its
Makefiles on the othertmk was greatly inspired by themk program written by Philipp
SlusalleR at the University of Erlangen.

On the one hand, thenk program has been designed for managing large code trees
without writing exhaustive Makefiles for each directory in the tree. On the other hand, the
tmk user is able to write very flexible and powerful scripts in order to automate special tasks
in certain projects or subprojects.

Since most projects consist of tasks which are repeated over and over and in a similar
fashion in many different directoriesnk tries to simplify the specification of these tasks by
providing

e a convenient specification and scriptilagguage
e asimple way of specifyintgargets, dependenciesand buildingrules

e amodule conceptwhich provides a way of specifying common rules and automati-
cally generating targets in an easy and transparent way

¢ a set ofpredefined modulesfor handling the most common tasks like compilation of
C and C++ code and linking of libraries and executables

Sincetmk can be extended very easily, and since these extensions can be kept orthogonal to
each other by means of the module concept, it is suited for performing any task which has
to to with writing scripts and calling compilers, converters, and other programs in order to
assemble target files from a number of source files.

1see for example John K. Ousterholit) and the Tk ToolkjtAddison Wesley, 1994
2see 'man make’
3email: slusallek@informatik.uni-erlangen.de

tmk requires some basic understanding of the TCL language, since the controlling files
are written as TCL code. Section 1.2 gives a brief introduction to the most important concepts
of how to specify lists and how TCL will expand expressions containing variables, quotes,
and escape characters.

1.1 How to Read This Manual

This documentation is organized as follows:

e Chapter 1 contains the introduction into the basic ideasntf as well as the basic
rules which define the TCL language, which is the basis of all description files driving
tmk’s behaviour.

e Chapter 2 uses some simple examples to demonstrate creating a project, compiling,
and linking withtmk .

e Chapter 3 provides a complete documentationinak’s core features (those which
are not implemented in a module, but in ttmek program). These features contain
the manual specification of targets, rules, and dependencies, as well as subdirectory
processing, multiple architecture support, project makefiles, and so on.

e Chapter 4 gives an introduction as well as an in-detail documentation thihenod-
ule mechanism and the function of the provided modules. It also gives some hint of
how to write your own modules. Chapter A gives some details about additional func-
tions provided for operating on lists of files, executing system commands, logging, and
handling target names transparently.

e Chapter 5 tells you how to instalink on your system and how to configure some of
the basic mechanisms so that they fit into your personal environment.

e The appendix contains indices of athk command line options, global variables,
environment variables, and built-in functions.

As a noveltmk user, you should start with the TCL language basics presented in 1.2,
followed by the “getting started” in Section 2.

After that, your further reading depends on what kind of job you wmikt to do for you.
In most cases, you're going to usek for building executables and libraries, so you should
try to understand in more detail how to use thefault module (cf. Sec. 4.1). But you
might as well continue with any other module description from Chapter 4.

If you're planning to dive deeper into the mechanismgnok , you can read about the
“tmk core” (Chapter 3). However, this is only necessary if you want to track whiatis
doing with your files, or if you want to write your own custom rules and targets.

5

For those people how want to implement a new module, it would be a good thing to
browse through some of the other modules’ description in order to get a feeling for the
general idea of a module. Then the only really advisable thing is to have a look at the
module’s source files and create new code by learning from the existing modules. The list of
variables and functions in the appendices might prove useful to that end.

1.2 TCL Basics and Expression Evaluation

SinceTMakefile relies heavily on the features of the TCL language, it is useful to know
some basics about TCL. Most of the following page is a reformatted version of the manual
page that you can get usimgan tcl . The following rules define the syntax and semantics
of the Tcl language:

[1] A Tcl script is astring containing one or moreommandsSemicolons and newlines
are command separators unless quoted as described below. Close brackets are command
terminators during command substitution (see below) unless quoted.

[2] A command is evaluated in two steps. First, the Tcl interpreter breaks the command
into wordsand performs substitutions as described below. These substitutions are performed
in the same way for all commands. The first word is used to locate a compraceldure
to carry out the command, then all of the words of the command are passed to the command
procedure. The command procedure is free to interpret each of its words in any way it likes,
such as an integer, variable name, list, or Tcl script. Different commands interpret their
words differently.

[3] Words of a command are separatedvityite spacgexcept for newlines, which are
command separators).

[4] If the first character of a word idouble-quotg”) then the word is terminated by
the next double-quote character. If semicolons, close brackets, or white space characters
(including newlines) appear between the quotes then they are treated as ordinary charac-
ters and included in the word. Command substitution, variable substitution, and backslash
substitution are performed on the characters between the quotes as described below. The
double-quotes are not retained as part of the word.

[5] If the first character of a word is an opérace ({) then the word is terminated by
the matching close bracé)(Braces nest within the word: for each additional open brace
there must be an additional close brace (however, if an open brace or close brace within the
word is quoted with a backslash then it is not counted in locating the matching close brace).
No substitutions are performed on the characters between the braces except for backslash-
newline substitutions described below, nor do semicolons, newlines, close brackets, or white
space receive any special interpretation. The word will consist of exactly the characters
between the outer braces, not including the braces themselves.

[6] If a word contains an open bracket (“[") then Tcl perforc@mmand substitution
To do this it invokes the Tcl interpreter recursively to process the characters following the

6

open bracket as a Tcl script. The script may contain any number of commands and must be
terminated by a close bracket (“]"). The result of the script (i.e. the result of its last com-
mand) is substituted into the word in place of the brackets and all of the characters between
them. There may be any number of command substitutions in a single word. Command
substitution is not performed on words enclosed in braces.

[7] If a word contains a dollar-sign ($) then Tcl performasiable substitutionthe dollar-
sign and the following characters are replaced in the word by the value of a variable. Variable
substitution may take any of the following forms:

e $name: nameis the name of a scalar variable; the name is terminated by any character
that isn't a letter, digit, or underscore.

e $name(index) : name gives the name of an array variable andex gives the
name of an element within that arrayame must contain only letters, digits, and un-
derscores. Command substitutions, variable substitutions, and backslash substitutions
are performed on the charactersrdex

e ${name}: name is the name of a scalar variable. It may contain any characters
whatsoever except for close braces.

There may be any number of variable substitutions in a single word. Variable substitution
is not performed on words enclosed in braces.

[8] If a backslash) appears within a word thelmackslash substitutionccurs. In all
cases but those described below the backslash is dropped and the following character is
treated as an ordinary character and included in the word. This allows characters such as
double quotes, close brackets, and dollar signs to be included in words without triggering
special processing. The following table lists the backslash sequences that are handled spe-
cially, along with the value that replaces each sequence.

e \a: Audible alert (bell) (0x7).
e \b: Backspace (0x8).

e \f: Form feed (0xc).

¢ \n: Newline (Oxa).

e \r: Carriage-return (0xd).

e \t: Tab (0x9).

e \Vv: Vertical tab (Oxb).

e \<newline >whiteSpace : A single space character replaces the backslash, new-
line, and all spaces and tabs after the newline. This backslash sequence is unique in
that it is replaced in a separate prepass before the command is actually parsed. This
means that it will be replaced even when it occurs between braces, and the resulting
space will be treated as a word separator if it isn’t in braces or quotes.

¢ \\: BackslashY).

e \000: The digitsooo (one, two, or three of them give an eight-bit octal value for the
Unicode character that will be inserted. The upper bits of the Unicode character will
be 0.

¢ \xhh The hexadecimal digitsh give an eight-bit hexadecimal value for the Unicode
character that will be inserted. Any number of hexadecimal digits may be present;
however, all but the last two are ignored (the result is always a one-byte quantity). The
upper bits of the Unicode character will be 0.

¢ \uhhhh The hexadecimal digithhh (one, two, three, or four of them) give a sixteen-
bit hexadecimal value for the Unicode-character that will be inserted.

Backslash substitution is not performed on words enclosed in braces, except for backslash-
newline as described above.

[9] If a hash character (#) appears at a point where Tcl is expecting the first character
of the first word of a command, then the hash character and the characters that follow it, up
through the next newline, are treated as a comment and ignored. The comment character
only has significance when it appears at the beginning of a command.

[10] Each character is processed exactly once by the Tcl interpreter as part of creating the
words of a command. For example, if variable substitution occurs then no further substitu-
tions are performed on the value of the variable; the value is inserted into the word verbatim.
If command substitution occurs then the nested command is processed entirely by the recur-
sive call to the Tcl interpreter; no substitutions are performed before making the recursive
call and no additional substitutions are performed on the result of the nested script.

[11] Substitutions do not affect the word boundaries of a command. For example, during
variable substitution the entire value of the variable becomes part of a single word, even if
the variable’s value contains spaces.

Chapter 2

Getting started

This section provides a quick start introduction to somenok’'s features by creating a
simple example project. The system commands and file naming conventions are for UNIX-
style operating systems.

2.1 C++ Compiling in a Single Directory

Suppose you have a directory containing the C++ sourcefil@sb.C , c.C , andmyprog.C ,
and you want to compile them all into a single executable program, mygorog.C pro-
viding themain() routine. Iftmk is installed on your system, you simply need to provide
a file namedrMakefile containing the following lines:

module cxx
lappend PROGRAMS myprog

The first line calls thenodule command which reads thexx module and apply rules
and target detection for the C++ language. The second line appends the word “myprog” to
the variableSPROGRAMSreating the contents of the variable as a list. This Wwal is
instructed to build an executable programgprog from the object filemyprog.o .

Having created this file in your directory, you just caik without any arguments, and
the following things will happen:

e A target directory for your current architecture and code level will be created. E.qg. if
you’re working under IRIX 6.5 and with the default code level, this will be the direc-
tory IRIX6.5/ . tmk will try to place all generated files in that directory (sometimes
this doesn’t work because a compiler cannot be convinced to put everything where you
want to).

e All .C files will be compiled into their corresponding files using the standard C++
compiler directives.

e All .0 files except myprog.o will be putinto a shared library naiieddirectory .so .

e The executablenyprog is created by linking togethanyprog.o and the library
lib directory .so .

e For each.o file, a correspondingdep file will be created in the target directory
which contains dependency information about the file. This is used to determine when
it is necessary to rebuild a target if some source file has changed.

The library containing all object files not corresponding to an executable is daltad
library. The default behaviour aimk is to generate one such local library for every project
directory containing one or more suitable object files.

The executable you're building may also depend on some external library, like the math
library. In order to link the math library and some othertilylib to your executable, you
just specify an additional line

lappend SYSLIBS "m mylib"

andtmk will add the linker directives for linking the libraries to the executatvigprog .
If some library cannot be found in one of the standard library locations of your system, you
can additionally specify where to find such libraries:

lappend LIBPATH $env($HOME)/mylibs/

This will generate the linker options for finding the libraries at link time as well as at run
time (for shared libraries). The expressipenv($HOME) evaluates to the value of the
environment variabl8HOMEet by the shelimk was started from.

If you modify one of the source files, elg.C , and calltmk again,tmk will recognize
thatb.C has changed (by means of the file modification time), and only recoimjoileand
relink the executable. In a similar waynk recognizes when some of the included header
files have changed (through thé dependency files), and recompiles the corresponding
object files.

Another feature when using the architecture-dependent target directories as described
above is the simple way of cleaning up such a dirctory. If you type

tmk clean

the directorylRIX65/ will simply be deleted, removing all automatically generated targets.

2.2 A Simple Project Tree

Now let’s assume that you have a project consisting of several directories under some root
directory. In this case, you create a fil&lakefile.proj in the tree’s root containing

10

global variable declarations for the whole project (like compilation flags etc.). The location
of the global project file defines the value of the varig@f&ROJDIR, which is used to access
the root directory of the current project. For a staivjakefile.proj may be empty.

Additionally, you have to put onéMakefile in each directory of you project. These
TMakefile ’'s may for example contain a line like this:

subdir [glob -nocomplain *]

Thesubdir command takes a list of names and tétfgk to recursively build targets in
all directories in the list in which it can find anoth&Makefile . The TCL command
[glob *] expands to the list of all files in the current directory. Tne@complain
option prevents the output of error messages if no files are presaodir will filter out
all names which do not correspond to a directory, or do not contaakefile

Now, if you calltmk in any directory within your project tres¢mk will first build all
existent subdirectories, and then the directory you have caidin. By typingtmk -
local , you can prevenimk from recursing into the subdirectories.

In each subdirectory of your project, you may use different modules and define special
targets and rules. One feature automatically providettriiyis the generation of a library for
each directory consisting of all object files which do not correspond to an executable. If the
example from Section 2 takes place in some directaydir/ ,tmk creates a library named
libmydir.so (or.a , depending on the settings) in the target directory. This library would
contain all the object files exceptyprog.o .

With this automatic library feature, it is very easy to reuse code from one project directory
in another one, since you can simply link the corresponding library to you executable in
the other directory. For example, #PROJDIR points to some project directory named
myproj , and you are in the subdirectonyyproj/a/b/ and want to use the functionality
of the library in directorymyproj/x/y/z/ , You just have to specify

set PROJLIBS myproj/xly/z

in theTMakefile inthemyproj/a/b directory. This will automatically deduce the cor-
rect library path and library name for you (depending on8A&CHsetting etc.). Similarly,

is SPROJDIR s set, thec andcxx modules will add the parent directory $PROJDIR as

an include path. This way, if your project root directory is naive@RO,Jyou may include
specific header files from within other directories in the project like this in your C++ code:

#include <MYPROJ/xly/z/someheader.hh>
#include <MYPROJ/x/y/z/some_other_header.hh>

Thesettinclude statements will still work if you change the root directory of you project
one day. Besides from that, it provides an independent name space for your header files. For
more information about the automatic linking, library, and project features, please consult
Sections 3.10 and 4.1.4.

11

It is important to note that it requires some conformance of how to organize the source
code in order to get the maximum performance with minimal effort oubdd. The most
important rules of thumb are:

e Organize your code into subdirectories. Each subdirectory should contain some sub-
project in the sense that the files are somehow closely related to each other by function.
The directory structure should be planned so that it remains constant except for newly
added directories.

e Implement all features which should be reusable in simple source files which do not
contain amain() routine. For testing or applying the code, write an extra source file
containingmain() . If you do so, all the functionality of the directory can be put into
the library, and the test program or application is separated from it.

e Try to split your project into the core parts and the applications using the core parts
(in separate directories). Then make sure that the core is always compiled before the
applications.

e Try to apply a consistent naming scheme for your directories, files and code objects.
This way you may easily replace names by others, your code is more readable, and it
is easier to navigate in you code tree.

12

Chapter 3

The tmk core

The basic process when usitigk is similar to using the well-knowmake tool. When
calling tmk, it searches for a file callefiMakefile in the current working directory. In
contrast to a standarllakefile , the TMakefile is interpreted sequentially and may
contain arbitrary TCL statements in order to define or modify variables, produce output, or do
anything you want. In addition to standard TCL commands, several spetiatommands
and variables can be used in order to define targets, dependencies, and building rules.

The basic assumption foémk is that you have a number tdrgetfiles, eachdepending
on severabource filesor dependencieby means of correspondingles When the target
does not exist, or whenever one or more of the source files change, the target must be rebuilt
by executing the appropriate commands. This is the main process for all kinds of devel-
opment tasks, e.g. the edit-compile-link-test cycle of software development or any similar
process involving compilers, translators, filters, etc.

3.1 Specify Which Targets to be Built

The only way to makémk do anything is to specify which targets you would like to have
built. This is basically done by means of theild command:

build <list of targets>

This tellstmk to add the specified targets to the list of targets to be processed. This will
not cause any immediate actionmk will continue to parse the completEVakefile
before starting to build all the targets. The order of target building is determined by their
appearance in thEMakefile , plus the recursive building process which always builds all
dependencies before building the dependent target.

Instead of listing the targets in tAéMakefile , you can also specify the desired targets
at the command line dink, overriding thebuild commands in th&@Makefile . If no

13

target is specified either way or by using the automatic target generation (cf. Sec.tthk.1),
will exit with an appropriate message.

If targets are generated automatically, you sometimes need the option of including some
files from being build. Theémk default module will exclude all targets in ti#=XCLUDE
variable from being built explicitly. If a target appears in a lower level of a dependency chain
(meaning it is an indirect target), ti=XCLUDEmMechanism does not apply.

3.2 Simple Targets and Rules

In order to specify which files a target depends on and how it can be built from those depen-
dencies, th@Makefile may contain one or sever@rget commands of the form:

target <target> <source filess <command-

While we assumectarget> to be a single file name heresource files- can be an arbitrary
TCL list of file names<command- can be any valid TCL script, usually enclosed in braces.
A simple example would read like this:

target myprog myprog.o {
cmd CC -0 $TARGET $SRC
}

Now, if the user typetimk myprog , tmk will execute the command
CC -0 <somedir>/myprog <somedir>/myprog.o

where<somedir> is the directory in whichtmk puts all automatically generated files
by default (cf. Sec. 3.8). The specified command will only be issuedyfirog.0 has
changed since the last build or if the target fiblgprog does not exist. You may override
this behaviour by means of thiorce option (cf. Sec. D). The use of the special variables
$TARGETand$SRCis explained in more detail in the next section.

tmk commandcmd is used in order to execute a system user command in a shell (see
Sec. A.2). The liste€Ccommand will link the object file and produce the executabied
is similar to the TCL commaneéxec , except that it echoes the command and pipes the
standard input, output, and error streams to the terminal.

A special case is whersource files- is empty (specified a§}). This means that the
target has to be built independently of any changes in any source filesniSayill always
try to rebuild it if it comes across this target.

14

3.3 Multiple Targets and T-Expressions

If multiple targets have to be built by the same kind of commands, it may seem useful to
specify a wholdlist of targets and to derive the source file names from the name of the
current target. Thearget command in an extended form can be used like this:

target <target files> <source filess <commands

Instead of specifying only a single target, you can use any TCL list of targets.<Bmthrce

files> and <commands are so-calledarget-dependent expressioos T-expressions As

already demonstrated in the previous section, T-expression may contain a number of special
variables which are setto target-dependent values before expanding the expression (by means
of the TCL[eval] command) at building time:

e $TARGETthe full target name, including architecture-depending target directories

e $ROOT all characters o8 TARGETup to (but not including) the last dot (cf. TCL
commandfile rootname $TARGET])

e SEXT: all characters from the last dot on, or the empty string if target name contains
no dot (cf. TCL][file extension $TARGET])

e $DIR: all characters up to the last slash, or'." if there are no slashes in the target name
(cf. TCL [file dirname $TARGET])

e $TAIL : all characters after the last slash, or the empty string (cf. [fit&L tail
$TARGET)

e $BASE all characters after the last slash and before the last ddfi(ef.root-
name [file tail $TARGET]])

In addition to these variables which are common to all T-expressions, you may \&eRe
variable wihtin theccommands argument in order to get a list of all source files. While in
this simple example, you could simply use the files explicitly, there are situations where it
is imperative to us&SRC(e.g. in the case of architecture-dependent targets and a list more
than one source files, cf. Sec. 3.8). If you want to pick one of the source files from the list,
you may employ TCL commands likendex <list> <index>] (cf. Sec. 1.2).

It is important to note that botk source files- and <commands will be evaluated on
thegloballevel. This means that all global variables will be known without declaring them
explicitly. On the other hand, local variables declared within a procedure or temporarily set
within a loop will not be known within the target expression at building time.

A simple example will clarify the use of T-expressions for the target declaration:

15

set CCFLAGS "-g"
target {myprog yourprog} {$ROOT.o0 someother.o} {
cmd CC $CCFLAGS -0 $ROOT $SRC

}

This line in aTMakefile tells tmk that myprog can be built frommyprog.o and
someother.o , andyourprog from yourprog.0 andsomeother.o , respectively.
For buildingyourprog , tmk will execute

CC -g -0 yourprog yourprog.o someother.o

This way you can specify a whole list of files which obey the same rule. Note, however, that
T-expr ’s must be quoted so that the special target-depenedent variabl&RIBE Twill

not be expanded when parsing thelakefile (which would result in an error message).
For more information about expression evaluation, see Section 1.2.

3.4 Target Patterns

Since there are many standard procedures and naming conventions in the software develop-
ment cycle, it seems desirable to specify a rule of how to build all instances of a alaste

of targets. A class of targets may be specified with help of file name patterns as used in the
TCL glob command and in the file name expansion scheme of most shells. To this end, we
have a look at théarget command in its most general form:

target <target patterns- <source filess <commands

When building the targets, the current target will be compared to each of the patterns spec-
ified in <target patterns- by means of the TCL built-ifjstring match] command
which expands glob-style patterns. Both argumergsurce files- and<commands work
like described in Section 3.3, with the option of using T-expressions.
For example, in order to automatically compi files into the corresponding files,
the following statement would suffice:

target *.0 $ROOT.C {cmd CC -o $ROOT.o -c $SRC}
Now, whenever a target has to be built which matches the pdtterpntmk will look if there
is a correspondingC file and, if needed, will start the compiler in order to produce a new
.0 file.

3.5 Specifying Secondary Dependencies

In addition to the primary dependencies between a target and the source files which are
used directly in the building rule, you can provide lotssetondarydependencies (e.g. files

16

included in the source files). For example, if you want to build an objeckfde from a

C++ file x.C , andx.C includes some files lika.h andb.h , you should telltmk that

x.0 should be rebuilt whenevex.h or b.h have changed, even though tlire files do

not appear directly in the building rule commands. This can be achieved by means of the
depend command which has the following syntax:

depend <target> <source file list-

Thedepend command can be understood likeaaget statement without a command ar-
gument. Additionallydepend only takes a single target argument and does not understand
T-expressions. This is due to the fact tllapend should only be used in the context of
targetinstancesnot for general rules. Usually, secondary dependencies are generated auto-
matically. In the case of C++ code, the C module makes the compiler dump dependencies
into special files and then generatiespend commands from those files on the fly. See
Section 4.2 for a more detailed discussion of this topic.

In order to preventmk from checking dependencies to system header files and similar
code, the user can list file patterns in the varighBEPENDEXCLUDE This variable is
set to/usr/include/* in thedefault module, and will prevent any file below that
directory to be checked as a secondary dependency. Just add more paths to be excluded as
you like.

It is important to note that in order for a target to be built, all its secondary dependencies
must exist (or must have been built). If a secondary dependency does not exist and cannot be
built, tmk will immediately exit with an error. In contrast, if@imary dependency does not
exist and cannot be built, this only means that the chosen rule for the current target cannot
be applied, antimk will try to apply the next rule. Only ihorule can be appliedmk exits
with an error.

3.6 Resolving Multiple Rules for One Target

If you specify multiple building rules for the same targetk will use the first of these rules
which is applicable, meaning that all the primary and secondary dependencies for the rule
exist or can be built recursively.

When trying to build a targetmk will go through all rules with matching target patterns
in the order of their specification. For each rudmk first tries to find or build all the pri-
mary and dependencies. If all primary dependencies are at hand, it checks all the secondary
dependencies. If both exist or have been btk applies the rule and skips all other rules.

If the primary dependencies (or source files) for some rule cannot be tinokt skips
this rule and tries to apply the next one. If no rule is applicatotd, will exit with an error
message.

17

3.7 Dependency Chains

Up to now, we have concentrated dinect dependencies. Usually, a building cycle contains
whole chainsof dependencies. For example, some final executa@glgog will depend on

some object filanyprog.obj , which will again depend on some source fibgprog.C ,

and on included files likenyprog.h . In order to process this chain of dependencies cor-
rectly, tmk recursively collects all dependency chains for the current target until if finds

no more applicable dependency rules. Once the dependencies have been collected, it starts
from the bottommost dependency file (the last in the chain) and works its way up to the
target. Let’s have a look at an example:

target myprog myprog.o {exec CC -0 $TARGET $SRC}

target myprog.o myprog.C {exec CC $CCFLAGS -c -0 $TARGET $SRC}
target myprog.o myprog.c {exec cc $CFLAGS -c -0 $TARGET $SRC}
depend myprog.0o myprog.h

build myprog

This TMakefile explicitly specifies two dependency chains:
1. myprog < myprog.o <« {myprog.C , myprog.h }
2. myprog < myprog.o <« {myprog.c , myprog.h }

tmk will start to work its way up from the end of the first chain. It checksnifprog.h or
myprog.C are newer thamyprog.o (or the.o does not exist). If so, it will use th€C

-c command in order to build the object file. Next, it will compare the date of the object
file to that of the executableyprog . Again, it will issue the appropriate command if the
executable has to be rebuilt. If any of the bottom-most dependencies do not exist (e.g. if
there is namyprog.C), tmk will not be able to build the target using the first chain. So it
will try the second chain, requiring.a file. If this file exists, the target will be built from

it. If not, and if no other applicable chains exits)k will exit with an error.

3.8 Multiple Architecture / Codelevel Support

to be updated soon

tmk supports the parallel development for multiple architectures by means of a simple
mechanism. If the global variabBlJSE ARCHis set to 1, the variabl8ARCHwill deter-
mine the currently active architectutenk will automatically place all targets in a directory
namedbARCHY/. If you specify a target filpath/targ , tmk will effectively create the tar-
getpath/$ARCH/targ . The$ARCH)/ directory will be created if it doesn’t exist. When
specifying a dependency fiath/file , tmk will first look for existance of that file, than
for the filepath/$SARCHY/file . This means that concerning the specification of target and

18

dependency names, the multiple-architecture support is completely transparent to the writer
of the TMakefile and oftmk modules. One must only take care that the architecture
names do not interfere with directory names reserved for other purposes.

Since all generated targets reside in a single directory, it is very easy to “clean up” a
directory. If SUSEARCHIis true, the default module (see Sec. 4.1) will define the target
clean , which will simply perform the UNIX commandm -rf $ARCH in the current
directory. So the command

tmk clean

will remove all targets which can be rebuilt by callitrgk .

In order to support architecture-dependent source coding, each module should support
passing of th&ARCHvariable to the compilers and linkers in order to allow for architecture-
dependent code compilation (see example below).

In order to define rules which depend on the underlying architecture, you simply use
conditional TCL expressions in conjunction with thtARCHvariable, e.g. :

if SUSE_ARCH {
append CCFLAGS " -DARCH_$ARCH"

}

if { "PARCH" == "IRIX6.5" } {
set myCC [exec which CC]
} else {
set myCC [exec which g++]
}

[.]
target *.0 {$ROOT.C} {cmd $myCC $CCFLAGS -c -0 $TARGET $SRC}

In this example, if the current architecture is setRdX6.5 , the compiler will define the
macroARCHIRIX6.5 so that C++ code parts may be placed within compile-time condi-
tional statements like this:

#ifdef ARCH_IRIX65

[...]
#endif

The currently active architecture can be set attthe command line using thearch
option. The default architecture is determined from the glaimdd configuration installed
on your system (see Section 5).

19

The $ARCHname is normalized after parsing ttlek command line options, and once
again before parsing thEMakefile . Normalization in this context means that all outer
spaces as well as all trailing slashes will be removed.

If you want to pass target names to external commands outsideaagjet command,
you need to determine the correct target location by yourself. To this end, you may use the
functionsshortTargetName andfullTargetName as described in Section A.3.

3.9 Processing Subdirectories

Since most non-trivial projects are organised in tree-like directory structum&sdirectly
supports recursive subdirectory processing, including features like environment variable pass-
ing and parallel processing of subdirectory lists.

3.9.1 Processing and Excluding Subdirectories

Since it is assumed that subdirectory contain smaller parts of the targets in the current di-
rectory, subdirectories are always procedsefirethe current directory. In order to specify
which subdirectories will be processed, just declare them like this:

subdir <subdir list>

tmk will first exclude all directories from the<subdir list- which are contained in the
$SUBDIR EXCLUDEFEvariable. Then, it will filter out all names which do not correspond to
an existing directory by means of the T(lile isdirectory] command. Next, it
will skip all directories which do not containBMakefile . This is especially important if
you build targets for multiple architectures (cf. Sec. 3.8), stmde must distinguish genuine
code directories from the self-generat®RCHdirectories.

Only the remaining directories will be processed. Tilde expressions will be correctly ex-
panded (see TCL file command man page). Subdirectory processing will take place at exactly
the time when theubdir command is being processed during parsinglikiakefile

For example, if you always wardll current subdirectories to be processed, you may
include the following line:

subdir [glob -nocomplain *]

The argument expression determines the list of all files in the current directory (possibly
none, without generating an errotink will automatically filter out everything which is not
a directory or does not containTaMakefile , and so it will descend only in the reelevant
directories.

When processing the specified subdirectories, the progmviKwill be called with the
command line arguments BARGS $ARGSwill be filled with the arguments passed to the
current instance aimk .

20

TCL variables arenot passed down to thienk subprocesses. This is mainly due to the
fact that an invocation dimk in a subdirectory should normally do the same thing ask
would have been invoked recursively from within a parent directory.

However, if you want to pass variables down to the subprocess, you can employ the
environment variable mechanism by means of the BOlz array. Use the variable name
$env(SOMEVAR) in order to access the environment variaB@OMEVAR the current
environment.

3.9.2 Directory-Based Parallel Processing

Since often subdirectories can be processed independently of eachrotherpvides a way
of specifying that certain directories can be processed in parallel. The user simply specifies
a list of lists of directoriegnstead of a simple list:

subdir <list-of-lists of subdirectories

All directories of eachnnerlist will be processed in parallel. A simple example would read
like this:

subdir {{testA testB} {testC testD testE}}

This would cause the parallel building of directortestA andtestB , and then the par-
allel processing of the other three specified directofasallelism not implemented yet.

3.10 Project Makefile

Unless called with thenoproj option, tmk will go from the current directory upwards until
itreacheg orfinds a file named@Makefile.project . This file will be processed before
the local TMakefile in order to allow project-wide “global” definitions and functions.
During parsing of the project makefilenk will set the current working directory to that of
the project file. So it is very easy to store the project root directory in a variable like this:

set PROJDIR [pwd]

If you want to use an alternative file, you may explicitly specify a project makefile by means
of the command line optiofproj <filename>

Set setting oBPROJDIR also enables the use of a lot of mechanisms like comfortable
specification of include paths and project libraries, as defined in the default module. Please
refer to the next section for details on this topic.

21

3.11 Debugging

When you encounter an error or a strange behaviour that you (or your systems administrator)
cannot explain, you may want to try th@ebug option oftmk. This causesmk to output
lots of verbose comments about what it is acutally doing and why. The best way to debug
atmk session is to pipe the debugging output into a file and then search in this file using
a text editor program. For example, if you're using the EMACS system, you cartratart
-debug using the compile command and then look at the output in the resulting EMACS
buffer.

First,tmk gives some information about the configuration it uses, e.qg.:

tmk: [dbg] machine: mips sgi IRIX 6.5 UNIX

Then it tells which files are being read and processed, what the project directory is set to, and
SO0 on:

tmk: [dbg] found /usr/htschirm/proj/IBR/TMakefile.proj

tmk: [dbg] setting PROJDIR to /usr/htschirm/proj/IBR

tmk: [dbg] found /usr/htschirm/proj/IBR/TMakefile.priv

tmk: [dbg] reading module /usr/htschirm/proj/tmk/modules/default.tmk
tmk: [dbg] ----- begin processing /usr/htschirm/proj/IBR/TMakefile.proj -
tmk: [dbg] reading module /usr/htschirm/proj/tmk/modules/newclass.tmk
tmk: [dbg] ----- end processing /usr/htschirm/proj/IBR/TMakefile.proj -
tmk: in directory /usr/htschirm/proj/IBR/filter/single

tmk: [dbg] ----- begin processing TMakefile -----

tmk: [dbg] reading module /usr/htschirm/proj/tmk/modules/cxx.tmk

tmk: [dbg] adding target/rule *.0 <- {$ROOT.C}

tmk: [dbg] reading dependency files..

[.]

Furthermoretmk protocols every target or dependency that is being added, and it also shows
the dependencies that are excluded ¥ZEPENDEXCLUDE So if you're tracking some
special file for which the building process does not seem to work, you can simply search for
the filename in the output protocol, and you will see in which dependency chains and rules it
is involved. The example below shows the effect of target commands and build
command.

tmk: [dbg] adding target/rule *.0 <- {$ROOT.c++}

tmk: [dbg] adding target/rule libIBR_filter_single.so <-
toFloat.o Quantize.o Crop.o [...]

tmk: [dbg] adding default targets: libIBR_filter_single.so

22

After having built the rule database for the current directtmk proceeds with working

from the specified toplevel targets down to the lowest dependencies. For each target, it lists
which primary and secondary dependencies there are, and then it recursively checks all those
dependencies.

tmk: [dbg] toplevel targets: libIBR_filter_single.so

tmk: [dbg] checking target: libIBR_filter_single.so

tmk: [dbg] prim dep for libIBR_filter_single.so: toFloat.o Crop.o [...]

tmk: [dbg] sec dep for libIBR_filter_single.so:

tmk: [dbg] checking target: toFloat.o

tmk: [dbg] prim dep for toFloat.o: toFloat.C

tmk: [dbg] sec dep for toFloat.o: [...]

tmk: [dbg] toFloat.C: no matching rules/dependencies, but exists.

tmk: [dbg] Crop.o must be built because it does not exist.

tmk: [dbg] IRIX6.5/libIBR_filter_single.so must be built because
IRIX6.5/Crop.0 has been updated

In the above exmaplémk checks the dependencies for the specified library. The source file
toFloat.C exists, and since no secondary dependencioféioat.o is newer than the
object file, the object file will not be rebuilt. In contrastpp.0o does not exist yet, and so
tmk is going to build it fromCrop.C . As a result of this, the library containir@rop.o

must also be rebuilt.

When checking the dependencies for the current target, tmk looks up the dependent tar-
gets in its internal cache. If it has already checked the status of that target, it will output the
“cache hit” (including the coded file modification time). If not, it will say something about
the target’s status and add it to the cache.

If tmk returns from processing the dependencies for a target, it outputs something like

tmk: [dbg] back to processing RemoveBiasScale.o

This way you should be able to find your way througtk 's debugging output.

23

Chapter 4

Modules

Modules provide a way to predefine a huge number of general or specific rules and using
them effectively. A module is nothing more than a file containing statements in the same
syntax as in &Makefile . This means it can define variables and procedures, declare rules
and dependencies, add targets to the list of to-be-built targets, produce output, and so on.
You can invoke a module by means of tm@dule command:

module <list of modules-

The <list of modules- may contain any number of names. For each moeulame> tmk
will look for the corresponding file in the following places:

1. ./ <name-.tmk

2. for each elementpath> in the list
$env(TMK _MODULEPATH): <path>/ <name>.tmk

3. <directory whergmk is installed>/modules/ <name>.tmk

The second way of specifying a module path can either be used by setting the environment
variableTMKMODULEPATHfrom the shell, or by putting a statement like

set env(TMK_MODULE_PATH) somepath/

into your TMakefile

For enhancing the power tink , it comes with a number of predefined modules which
will be described in the following sections. They all share some common features in order
to support things like automatic target generation, multiple-architecture support, etc. Some
modules do their work if you just call them, others allow to configure them via global vari-
ables before or after calling them.

24

4.1 Thedefault Module

By default,tmk activates the moduldefault which can be found in thenk installation
directory undemodules/default.tmk . This script sets up some global variables and
basic routines in order to provide features like target generation for static and shared libraries.

The first thing the default module does is to set some useful variables concerning the
current working directory and the project directory:

e $PROJDIR this is set by themk core; it is the absolute path of where thislake-
file.proj has been found, or simply the current working directory if no project file
could be found.

e $PROJROOTthe parent directory d$PROJDIR
e $SUBDIR: the path of the current subdirectory, relativefPROJROOT
e SDIRTAIL : the last component of the current working directory
So for example, if you're in a directory
/home/myname/proj/myproj/a/b/c ,
and the project makefile was foundnmyproj , then the following values will be set:

set PROJDIR /home/myname/proj/myproj
set PROJROOT /home/myname/proj

set SUBDIR myproj/a/b/c

set DIRTAIL c

4.1.1 Automatic Target Generation and Exclusion

Automatic target generation means that sam& modules likeC andc look for source
code files in your directory and automatically append the corresporaliffiges to thebAU-
TOTARGETSariable. For example, thexx module will look for all files with any of the
suffixes listed ilfCCEXTENSIONSNd will register the corresponding files as automatic
targets. You can switch this mechanism on and off by setting th&éeAKEAUTOTARGET.S
The default is on. All modules which support this feature will append their module-specific
targets to th@AUTOTARGET#®ariable. Lateron, th8 AUTOTARGETHst is used for more
mechanisms like library generation, automatic linking, and so on (cf. next section).

If tmk is called with an explicit target argument, the automatic target detection proceeds
as usual, but only the explicitly listed targets will be built.

In order to exclude some files from being processed as an automatic target, you may set
the SEXCLUDEvariable to any target you do not want to have included in the automatic

25

target list. Please note that in the case of compiler targets, you must specify the object file
(e.g..0) as an autotarget, not the source file (likg).

After theTMakefile is completely processed, a default module procedure (set up using
beforeBuilding , cf. Sec. A.2) will automatically remove ttREXCLUDRargets from
the SAUTOTARGET 8st.

4.1.2 Library Specification

Thetmk default module provides some mechanisms for specifying libraries which should
be linked with the executables (or even with the generated libraries) in the current directory.
For “external” or “system” libraries, you must provide the symbolic library names and (if
needed) a list of paths in which to search for those files:

lappend LIBPATH $env(HOME)/mylibs
lappend SYSLIBS m xt mylibl mylib2

In this example (and for IRIX systemsink will first search for the fileibm.so ,libm.a ,
libxt.so ,libxta ,libmylibl.a , ..., inthe paths specified $LIBPATH. Each file
that will not be found in any of th8LIBPATH directories will be searched for by the linker
in its default locations.

The problem with this way of library specification is that there may not be two libraries
with the same name, since the linker would always find the first one in the path and then
try to resolve all symbols using that library. So when ugimds, “project”, or “internal”,
libraries are automatically assigned names which are unique within the complete project tree.
For example, if you have created a library in some directdbyc/ (relative to the root of
the project tree), you can specify that library uniquely by the command

lappend PROJLIBS a/bl/c

This tellstmk to look in the directorya/b/c for a library calleda_b_c. This way most
ambiguities are avoided easily. For example, if you're using the architecture-dependent com-
pilation (targets are put into @ARCHdirectory) and if you're on an IRIX system, the actual
library file nametmk will look for is

$PROJROOT/a/b/c/$ARCH/liba b _c.so
for a shared library, or
$PROJROOT/a/b/c/$ARCHI/liba _b_c.a

for a static library.

In order to make the specification of libraries complete, there are two more parameters.
The variable$LINK _MODEspecifies one of four possible linking modes. The choices are
“static.only”, “sharedonly”, “static_first”, and “sharedirst”, depending on whether you

26

want to enforce the use of static or shared libs, or whether you want to give a preference (e.g.
if a shared version of a lib exists, then link that one; else link the static version). If the flag
$LINK _LIB -TWICE:is on, then all libraries will be specified twice for each link command.
This helps resolving most of the problems with inter-library dependencies.

So a complete specification of libraries for a linking command needs five parameters:

e system lib path

e system lib names
e project libs

¢ link mode

¢ link-twice flag

The function LB SPEC takes these five parameters and compiles them ititwary speci-
ficationlist, as it is done wittLIBPATH, $SYSLIBS, $PROJLIBS, $LINK MODEand
$LINK _LIB _TWICEfor the default targets.

4.1.3 Multiple Project Locations

The default module also provides a way of linking project libraries from different project
locations. That means that you can have parts of the project in your home directory, and
other parts reside in some central directory which is shared by all users of those project
parts. tmk will automatically link libraries from the central version whenever it does not
find the corresponding project subdirectory in you primary project tree.

The location of the primary project tree is defined by $®ROJROOVariable, which is
set according to the parent®PROJDIR, the directory where you project makefile has been
found. In addition, you may set the variallEROJLOCATIONSto an arbitrary number of
paths pointing to different project root directories.

For generating dependencies and for the linking of every single project liBRR@JILIBS),
the default module will look for the corresponding project subdirectories (not including
$ARCH in the $PROJROOhierarchy first. If the directory is found, theémk will as-
sume that this project lib has to be there lateron. If not, timek looks in the directory
hierarchies specified B fPROJLOCATIONS proceeding in the specified order. The first
project subdirectory that actually exists will be used for the dependencies and linking.

Note that if you change the location of some part of your code tree, you usually will have
to rebuild all dependency files, since these contain absolute paths due to performance issues.
You can do this by simply building thdepend pseudo-target.

27

4.1.4 Local Library Generation

After the TMakefile has been parsed, tliefault module removes all those targets
from SAUTOTARGET®hich are specified viBEXCLUDEThen, it extracts all object files
from SAUTOTARGETSnd stores them in tfBAUTQOBJ list. Next, $PROGOBJIs cre-
ated, containing the object files corresponding to the targets speciffifRROGRAM-i-
nally, the object files to be put into the librai$L(B _OBJ) are determined by choosing those
files from$AUTQOBJwhich are not contained SPROGOBJ.

Depending on the flaghMAKESTATIC LIB and$MAKESHARELLIB , tmk creates
a static and/or static library in the current directory, containingdthi® _OBJ object files.

If the flag$LINK _LIB _INTO_LIB is on, then the libraries will be linked with additional Ii-
braries, as specified by the variabf4BPATH, $SYSLIBS, $PROJLIBS, $LINK _MODE
and$LINK _LIB TWICE(cf. Section 4.1.2).

The name of the libraries is determined by the path from the project’s parent directory
down to the current subdirectory. For example, if you're in the directoyproj/a/b
the libraries will get the symbolic nanmayproj _a_b. The actual filename depends on the
operating system. For IRIX, the static lib would be calldmnyproj _a_b.a, and the
shared lidibmyproj _a_b.so .

The result of this mechanism is that as default, there will be one (shared) library in each
subdirectory of your project, each containing the functionality of that directory. This can be
used very conveniently to put together your code piece by piece, since the libraries can be
identified uniquely by position in the code tree

4.1.5 Executable Generation

As mentioned before, the varial$#®ROGRAMSIll specify which executables shall be built.
For every executable (e.g), one target will be generated which links the object ()

with the libraries specified b$SYSLIBS, $PROJLIBS, etc. (cf. Sec. 4.1.2), plus the local
library containing all the other object files from the current subdirectory (cf. Sec. 4.1.4). If
no local library is built (e.g. bot$MAKESTATIC _LIB and$MAKESHARELDLIB are 0),

then the executable will be linked with the object files direlctly

4.1.6 Default Module: Example

Let's assume the following settings:

set SUBDIR a/blc

set MAKE_SHARED_LIB 1

set MAKE_STATIC_LIB 0

set LIBPATH {pathl path2}

IActually, this is currently not implemented, but will be provided on request. Sorry.

28

set SYSLIBS {m xt}

set PROJLIBS {alxlylc alx/z}
set LINK_MODE "shared_first"
set LINK_LIB_TWICE 1

set LINK_LIB_INTO_LIB 1

set PROGRAMS {execl exec2}
set EXCLUDE {c.o}
module C

Now let's assume further that there are the source @ilex1.C , exec2.C , a.C, b.C,
and c.C. Now th&C module will set

set AUTOTARGETS {execl.o exec2.0 a.0 b.o c.o }
with rules for compiling theC files into.o files. Thedefault module now sets:

set AUTOTARGETS {execl.o exec2.0 a.0 b.o}

set AUTO_OBJ {execl.o exec2.0 a.0 b.o}

set PROJ_OBJ {execl.o exec2.0}

set LIB_OBJ {a.0 b.o}

set libspec [LibSpec {pathl path2} {m xt} {a/x/y/lc a/x/z}\
"shared_first" 1]

With these definitions at hand, it will generate the following top-level targets:

e make shared liiba _b_c.so containing$LIB _OBJ, and link it with the libraries
specified by$libspec

e make executablesxecl andexec2 from the filesexecl.o andexec2.0 , rep-
sectively. Link them witHiba _b_c.so and the libs given b$libspec

4.1.7 Enforce Building of a Target

Sometimes, you may want to enforce the building of a certain target. One way of doing this
is to create a target without dependencies, e.g.

target x {} {... }

Anyway, sometimes the target in question will need some arguynpassed as dependency.

So in this case the above example cannot be applied. For this purpose the default module
defines the pseudo targetrce _rebuild which can be used to enforce the creation of
targetx like this:

target x {y} {... }
depend x force _building

29

4.1.8 Cleaning Up

The default module defines the default targktan , which is used for cleaning up all
automatically generated and temporary files in a directory. If you're not using the multiple
architecture supporUSE ARCHs 0),tmk executes the command

rm -rf [glob -nocomplain $CLEAN_PATTERNS]
If SUSEARCHs 1, then the command reads
rm -rf [glob -nocomplain $ARCH/ $CLEAN_PATTERNS]

If you also want other files to be deleted when callimk clean , simply append them to
the SCLEANPATTERNS/ariable, e.g.

lappend CLEAN_PATTERNS *

4.1.9 Regenerating File Dependencies

Another important target is defined for updating all dependency files for all targets. This can
be necessary when due to a version update depencies change from one file to another one
(e.g. by renaming an include file). Thiepend target is a pseudo-target which basically
does nothing. For each object fil&yz.0 to be generated, the language modules ¢ikend

cxx) will append dependency-generation targetyz.depend to the SAUTODEPEND

list. The default module then excludes dependency files correspdonding to targets in the
$EXCLUDHist, and for each remaining dependency target, makes this target a prerequisite
of the globaldepend target, e.g.:

depend depend xyz.depend
depend xyz.depend force_building

The second line (cf. Sec. 4.1.7 has to be specified to make sure that the dependency will be
generated itlepend is built, regardless of the file’s status or age.

The language modules have to definexiie.depend target’s functionality, because it
depends on the compiler and other language-dependend things how to update the dependency
files. In the end, you can update all dependency files by simply calling

tmk depend

in the corresponding directory tree.

30

4.1.10 default Module Internals

This section presents some basic functions and variables provided thgfthét module.
You can use these to easily define targets (executables, libs, shared objects) which do not fit
in the default pipeline, but use the same basic routines.

Sorry, the functions are not documented here yet. Please have a look into the- file
fault.tmk for more details.

e READDEPENDENCIES
e UNIQUELIBNAME

e LIBSPEC

e MAKETARGET.*

e FILENAME _*

e SEARCHINPATHLIST
e FINDLIB

o FINDPROJLIBDIRECTORIES

4.2 c andcxx : C/C++ Compilation

Thec andcxx modules provide methods for compiling C and C++ code and automatically
generating all corresponding targets and dependencies in the current directory.

4.2.1 Compilation and Dependencies

First, the modules define general rules for compiling a C/C++ source file into an object file.
For every source file extensi@EXT from the listSCEXTENSIONS $CCEXTENSIONS
the following rule is crested:

target *.0 $ROOT.SEXT {
$C $CFLAGS $C_MDEPENDENCIES -c $SRC -0 $TARGET

}

For C++, simply replace nearly dlls by CCs. The source fil&SRCin this case will be the
C/C++ file, andsTARGETwill expand to the object file to be created in S®RCHdirectory.
The $CC MDEPENDENCIESariable contains an expression which will be evaluated in
order to generate the compiler's command line options for writing the dependencies into the
right dependency file.

Next, rules are generated for renewing a target’s dependency file:

31

target *.depend $ROOT.$EXT {
$C $CFLAGS $C_MDEPENDENCIES $C_DEP_ONLY -c $SRC -0 $ROOT.o

}

For any targek, the corresponding targgtdepend will be in charge to re-generate the
dependency file. Th&C_DEP ONL Yvariable is a compiler switch for not actually compiling
the code, but only generating the dependencies.

Now, for manually generating a target for a source %€ , only one function call is
needed:

MakeTarget C x.C
This will cause the following actions:

e if SMAKEAUTOTARGETS on,x.0 will be appended to thEAUTOTARGET 8st
(and thusx.o will be part of the automatic library/executable linking process)

e x.depend will be appended to th AUTODEPENDst (cf. Sec. 4.1.9)

¢ if a dependency file already exists, it is read usirspBDEPENDENCIESIN order to
generate the right dependencies wittmrk (cf. Sec. 4.1.10)

The MAKETARGET_C function returns the target name for generating the object file. So
if you want to build an object file manually, just do something like:

build [MakeTarget C x.C]

Depending on the project parent direct@#yROJROO™efined by the location of the
project makefile (cf. Sec. 3.10), tlreandcxx modules will automatically add the include
path option-ISPROJROOT to the compiler flags. ISPROJLOCATIONSs specified, one
additional--1 statement will be generated for each specified path. This way, include files
may be specified relative to the project root directory, regardless of where the corresponding
subdirectory is actually located. The proper include statement for an includeHiléen the
subdirectorya/b/c in projectmyproj looks like this:

#include <myproj/a/b/c/d.h>
The compiler will always choose the file in the first project subdirectory amongRRO-
JROOT$PROJILOCATIONSpaths that can be found. This way, the include paths do not
need to be changed when the project home moves, and on the other hand the include files as

well as the libraries are identified uniquely by the path relative to the project root.

32

4.2.2 Automatic Target Generation

In addition to just defining the rules for C/C++ targets, th@ndcxx modules automatically
detect the source files in the current directory, and call thex BTARGET_C function for
those detected source files.

The variable3CEXTENSIONS($CCEXTENSIONSor C++) contains all extensions
which are assumed to be used for C (C++) code files. At the moment of cailgle c
or module cxx , tmk will look for files with these extensions and automatically call the
MAKETARGET_C fucntion for generating object file and dependency targets and updating
theSAUTOTARGETst, if SMAKEAUTOTARGETRB 12. As usual, target files@) listed
in SEXCLUDEwiIll not be built.

C++ and Templates

An important issue for compiling C++ code is how to design your code and Makefiles in
order to employ meta-code mechanisms as for example templates. Templates introduce a
whole number of new constraints and problems to the traditional C++ compilers and linkers,
and so this topic is worth an extra amount of consideration.

For the MIPSpro C++ compilers, it is important to obey the following rules in order to
make templates work together with libraries and complicated code trees:

e Use a consistent naming scheme. Most importantly, if a template is declared in a
file file.h , the template implementation (if there is any non-inline code) will be
searched by the compiler in the filee.C |, file.cpp , and under similar names.
Please consult your compiler manual pages for details.

e Since templates are normally instantiated when they are needed, it may happen that
some program using a library may require some library code to be “recompiled” by
the prelinker in order to generate template instances for the user program. In order to
do this, the prelinker must find trsource filesof that library. If all include files are
specified using the project-relative paths as discussed above, the prelinker will be able
to find all include files and the corresponding source files.

e You should always use the compiler optiopgnone and-prelink when com-
piling C++ code. This ensures that templates will not be instantiated too often for the
same program.

e If the flag$CC PERLINKERIs on, theC module automatically patches the MIPSpro
compiler’sii files insuch way that thprelinkerwill always run the compiler with

2Please note that in order to change the file extensions used for generating the targets, you must mod-
ify SCEXTENSIONY $CCEXTENSIONSeforecalling themodule statement. The best way to change
the default extensions is to SSEEXTENSIONSand/or$CCEXTENSIONSn the project makefileT Make-
file.proj

33

the-DCCPRELINKoption. When compiling in “normal” modelJ CCPRELINKwill
be used. This provides a simple means of writing code that is compiled only during
the prelinking phase or only during the “real” compilation phase, for example by using

#ifndef CCPRELINK
. code which will NOT appear during prelinking ...
#endif

4.3 qt: QT Library / Precompiler

Theqt module supports the automatic precompilation of QT-specific header files into so-
called “meta object” C++ code. Also, it appends the QT-specific library path tLtHz
PATHvariable, and include paths 8CCFLAGS

Depending on the value 8QTDIR, theqt module will append theI$QTDIR/include
to the$CCFLAGSand$QTDIR/lib to the$LIBPATH variable.$QTDIR, if not manually
specified by the user, is set depending on the flavhi@&andN64.

For precompiling the QT header files, tSf TPATTERNSariable contains glob-style
patterns determining which files are supposed to be QT-specific header files. Currently,
$QTPATTERNSs set to

*.qt.hh *.qt.H gt*.hh gt*.H qt*.h++ *.qt.h++ qt*.h *.qt.h

All header files matching one of these patterns will be precompiled by the meta object com-
piler moc using the command

cmd $QTMOC $MOCFLAGS -0 $TARGET $SRC

where $SRCis the header file, an8TARGETIs the target C++ file name, which is the
rootname of the header file, plusoc.C . The correspondingnoc.o file is added to the
automatic targets liSBAUTOTARGETSPQTMOCIf not set otherwise by the user, is set
to $QTDIR/bin/moc . SMOCFLAGS initialized with-p [pwd] , which is a necessary
workaround when generating targets in a different directory, liIKRARCH)/.

4.4 vyacc : Parser Generator

YACC stands for “yet another compiler-compiler” and is a tool for generating a parser (in C
code) from a grammar. Thgacc module provides rules for generating C/C++ code from
grammars, detects the grammars and registers the corresponding automatic targets.
Before calling theyacc module, you may choose the file suffix which indicates a gram-
mar file totmk by settinggY ACCSUFFIX Similarly, you can modify the suffix of the code

34

and header files to be generated by setting the vari8MACCSUFFIXCand$YACCSUF-
FIX _H. The defaults arg, C, andhh.

Theyacc module generates rules for generating a header and a C code file from each
grammar. To this end, it calls the comma®dACCwith options$YACCFLAGSSince the
resulting header file will have the wrong nanek will rename the header file as desired.
Both the.C and the.hh file will be placed in thefARCHdirectory (if SUSE ARCHs on).

For each translated grammar, the corresponding objectdileWill be added to the list of
automatic targets (cf. Sec. 4.1). etc.).

The defaul$YACCis /bin/bison -y . The defaul$YACCFLAGSre-d .

4.5 lex : Lexicographical Analyzer

Lex is a lexicographical analyzer, usually used in conjunction with a parser generator like
YACC (cf. Sec. 4.4). Théex module generates rules for translatinga description file

into a C code file. The suffix of the lexicographical file can be se®liBXSUFFIX before
calling the module. The suffix of the code file to be generated can be s8t.EESUF-

FIX _C. The command to be called can be modified (at any time inftakefile) via

$LEX and$SLEXFLAGS The defaults are

e SLEX =flex |,

o SLEXFLAGS=

e SLEXSUFFIX =1,
e SLEXSUFFIX C=C

Since the lex file usually needs the include file generated by the parser generator like
YACC (cf. Sec. 4.4), the module ad$#A\RCHto the the include path for the C and C++
compilers (ifSUSE ARCHs on).

4.6 doxygen : C/C++ Documentation Generation

Doxygen is a system for automatically generating HTMIEK, and manpage documenta-
tion from C++ files. Doxygen uses a configuration file containing several variables which
define where to look for the source files, which files to consider, how to name the project,
and so on. Unfortunately, this configuration file is static, meaning that there is no way of us-
ing environment variables or similar mechanisms inside the Doxygen configuration file. In
order to bypass this inconvenientek will modify the config file on the fly before calling
doxygen .

3seehttp://www.stack.nl/ dimitri/doxygen

35

In order to create a documentation for your projagroj , you simply add a subdirec-
tory (e.g.myproj/doc) and write aTMakefile like this:

module doxygen

set DXX_PROJECT_NAME "Name-of-my-Project”

set DXX_INPUT "$PROJDIR"

set DXX_FILE_PATTERNS "*h *hh *H *h++ *hpp *.hxx *.doxy"

The first line instructsmk to load the Doxygen module. The module will do the following
things prior to actually generating the documentation:

e generate a Doxygen config file nante@RCH/$DOXYFILE INPUT, using thesDOXY -
GEN -gcommand

e for eachtmk variable $SDXXSOMEVARIt will replace the corresponding variable
definition SOMEVAR = <something> in the config file by the definition provided
in the TMakefile

o write the “patched” config file tSARCH/$DOXYFILE

This simple mechanism allows to use timek variables directly for configuring Doxygen.
Since theTMakefile is used as the “true” config file, the steps described above will be
performed whenever tiEMakefile is newer than the Doxygen config file.

The module generates the following targets:

e doc: generate HTML, LaTeX, and manpages. This is the default target when calling
tmk without arguments. If you do not want to generate all versions of the documenta-
tion, you may set some of the variab®3XX GENERATEHTML $DXX GENERATHEATEX
and$DXX GENERATEVIANO "NO" .

e ps: first build targetloc , and then calinake refman.ps inthe ETpX subdirectory
in order to generate a Postscript version of the reference manual.

The documentation will be generated in the directdniesl,latex,man inthe$ARCH
subdirectory. This is quite convenient because Doxygen contains a C++ preprocessor which
can generate macro definition-dependent documentation.

4.7 newclass : Generate Files From Templates
newclass simplifies the creation of header files for new class definitions. Usually, only
a single class definition is placed in a header file. So it makes sense to use a template for

header files which contains some project-specific header as well as the basic class definition
code. If you put the line

36

module newclass
in your TMakefile.proj (cf. Sec. 3.10), you may call
tmk newclass
in any of your project subdirectorieBnk will ask you for three things:
e the name of the class to be defined
o the template argument list (optional)
e a brief description of the classes’ purpose

Then,tmk looks for all template files it can find, expands certain expressions in those tem-
plate files, and creates new code files in your directdngk looks for all template files
SNEWCLASS EMPLATE.*. SNEWCLASS EMPLATHlefaults tdBPROJDIR/newclass
The resulting files are named after the class, plus the suffix of the template file.

The template file may contain any number of (non-nested) expressions of the form

[@@ expression @@]

Theexpression will be expanded by a TCleval] command, and the whole expres-
sion will be replaced by the expanded expression. If your expression contains spaces, you
should place it within double quotes.

In addition to this general mechanism, the following variables will be set in addition to
all othertmk global variables:

e SCLASSNAMEname of the class

e $DESCRIPTION brief description of class

e SFILENAME full name of the file to be written
o $SUFFIX: suffix of the file to be written

o $STEMPLATEARGS template argument list, e.quit N, typename T , possibly
empty

e STEMPLATETYPE template argument list enclosed<®, e.g.<int N, type-
name T, empty string IS TEMPLATEARGSs empty

o STEMPLATEDEEF template definition code, e.template<int N, typename
T>, possibly empty.

o SUSERNAMHEhHe result of thevhoami command

37

e SCREATORthe user’s full name (inferred from thmasswd entry)
e $CVSID: simply expands t&ld$
e $CVSLOGsimply expands t$Log$

If the variablessCLASSNAMESTEMPLATEARGS and$DESCRIPTIONare set man-
ually, the user will not be asked for those values. This is useful for “misusing” the module
for other, similar tasks.

4.8 dist : Make Executable Distributions

With the dist module, you can generate a distribution of everything that is needed for
“giving away” a standalone executable. This is non-trivial as soon as you're using shared
libraries, or dynamic shared objects which are linked dynamically at runtime. You also may
want to include example files or non-standard libraries in your distribution, and the resulting
software should be able to run in any directory that it is put into. To this enddidte
module does the following:

e examine the executables you want to distribute, and find all shared libs needed to run
them

e copy the executables and all used libs from within the project tree(s) and from other
specified directory trees

e create a wrapper for each executable, so that the executable will run and find its li-
braries in any environment

It is possible to use some subdirectory in an existing project or create a 'dist’ project
in your project tree. In the latter case, you will need to define a (possibly ermptgke-
file.proj . Then, in order to create a certain distribution, the most important lines of code
in youtmk are

module dist
lappend DIST _TARGETS a/b/c/$ARCH/myexec

This tellstmk to copy the executableyexec for the current architecture from the project
directorya/b/c . If you specify an absolute pathmk will take the specified executable
directly. If you specify a relative patiimk assumes that you specify some executable in
a project tree, and will look for the corresponding directonsPROJROO®Rs well as in
$PROJLOCATIONS(cf. Sec. 4.1.3).

With the selected executabtenk will use theldd system command to determine which
shared libraries are needed by the executable. Tthengdetermines which of these libraries
are either

38

e in the directory tree beloPROJROOTcf. Sec. 4.1),
e in a directory tree below any #PROJLOCATIONS(cf. Sec. 4.1.3),
e or below any directory specified BDIST _COPYLIB _DIRS

This last variable is empty by default and can be set in the distribdiMakefile . The
$PROJLOCATIONSare usually set in theMakefile.proj

Those libraries which satisfy any of the above conditions will be considered as “copy-
worthy” for the distribution, and thdist module will create targets to copy the files if they
are newer than the current ones in the distribution.

The directory structure in the distribution target directory looks like this:

e SARCH/$DIST _BIN/ : executables and the wrapper script
e SARCH/$DIST _LIB/ : libraries and shared objects
e default namesbin andlib

This means that you can modify the structure by setting the corresponding variables.
Apart from the executable(s) and the necessary libraries, you may want to copy additional
files into the distribution. This can be done easily by usingdise _copy command, e.g.:

dist _copy lib $PROJROOT/a/x/y/$ARCH/some _obj.so
dist _copy doc $PROJROOT/a/b/doc/README.txt

The dist _copy command creates targets to copy files if they are newer than the ones
currently in the distribution. The firstargumentist _copy is the target directory, relative
to the distribution directory. If the directory does not exist yet, it will be created (recursively).
The specified executable files will be copied and renamed. The vaiB T RENAME
controls how this new name is determined, the default valy8{$TEM}.orig }. $ITEM
will later expand to the original name of the executable. Next, a wrapper shell script will be
created by the name &DIST _WRAPPERFor each executable, a symbolic link is created,
named as the original executable and pointing to the wrapper. This means that calling the
link calls the wrapper, and the wrapper then calls the “real” executable.
This mechanism allows for setting an arbitrary number of environment variables (in the
wrapper) before calling the executable. You can simply add shell script command lines to
the wrapper using theist _script command, e.g.:

dist_script "export SOME_PATH=\$DIST_PATH/lib"

The quoted shell command line will set the shell variab®MEPATH prior to calling
the executable. Within the script, the shell variaB@2IST PATH points to the directory
where the distribution is currently located (which is determined by the wrapper script). This

39

mechanism is also used to set the runtime shared library search path so that libraries are first
looked up in the distribution’s library directory.

This means that as long as your software does not contain any hard-coded path names or
similar things, the complete distribution can be relocated everywhere by simply moving it.
So if you need to work with search paths or similar things within your programs, you should
take care that those paths can be set via environment variables. If that is the case, you can
always set the paths to reasonable and relocatable defaults in the wrapper script.

4.9 db: Simple Database Interface

Many automation tasks rely on some sort of database query. Therafidtegomes with

a small textfile-based database interface which can be used for managing small amounts of
data very conveniently. Just like tHéViakefile , tmk’s database files are simply TCL
source code files. Tha#b module provides several new commands.

4.9.1 Database definition

A tmk database is a list of data records. A record is a list of fields. A field is a pair con-
sisting of the fieldname and a value. Here is an example of how to define one such record,
representing one instance of an address:

db_record {
field lastname "Mustermann"
field firsthame "Erika"

field street "Bahnhofstr.”1"

field zipcode "54321"

field city "Irgendwo”

field phone "+49 12 3456789"

}

A file containing a collection of such definitions is called a database file. Let's assume you
have defined some records/addresses in theffieddr.db . Thetmk commandib _read
is used to create a database (a list of records in the main memory) from the file:

module db
set db [db_read "myaddr.db"]

The second line of code will simply execute the specified database file, add ffezord
andfield commands will append fields and records to the list that will then be stored in
the variablebdb that was specified in the example.

The resulting database is simply a list of records, which each record being again a list of
fields. Each field is a pair consisting of the field name and the field’s value.

40

4.9.2 Working on the Database

You can operate on the list of records with all standard TCLtamnid commands. For more
convenience, there are some database commands for working on lists of records or on single
records.

In order to generate the right selection and order of records, there are two fundamental
database commands.

db select <database- <match-expr

This command is used for selecting a number of records from the specified list (database).
It returns a new databasematch-expr is some valid TCL expression which may contain
field names as variable names. This metmk will go through all records and, before
evaluating<match-expr for the current record, create one variable for each valid field in
the current record, with the variable name equal to the field name. Example:

set thecity "lIrgendwo"
set people_in_irgendwo [db_select $db {$city == S$thecity}]

This line of code selects all records from the previous example in whiclithe field
contains the valuérgendwo . Please note that again, the expression is evaluated in the
context of the caller, so that all currently visible variables can be used.

Instead of this very simple matching expression, you can use arbitrarily complexiikCL/
expressions. The simplest expressions'ate for selecting all records, arf@" for select-
ing no records.

The second fundamental command working on a list of records is used for sorting the
records. It has a similar form:

db_sort <database- <sort-expr> [<order>]

This command takes a database, sorts it according to a key which is determined by the spec-
ified <sort-expr>, and returns a new database. Thgort-expr> is again some TClimk
expression containing field variables. The result of this expression is used for comparing the
record to others (using ASCII comparison). The opticnaider> argument defines whether

the sorting will be done in ascending or descending ortlec’((default) or'dec”). Here

is an example:

set sorted_db [db_select $db {"$lastname__$firstname__ $city"}]

This example sorts the database by the last names containes in the records. For records with
the same last names, it will the consider the first names, and finally the city.

Please note that for the field-variable expressions used in the examples above, the corre-
sponding fields must be defined in each record. Techniques to make sure that certain fields
are always defined are discussed in the section akdvanced Record Definitions

41

4.9.3 Working on Single Records

After selecting and sorting the database, you obtain a list of records. Again, you can oper-
ate on this list with the standard TGk commands in order to do something with each
record or some of the records. After you obtain a single record from the list, the most basic
command to do something with that record is

db _with _record _do <record> <command-

This command allows you to execute any T@W code 'on’ the specified record. This
means that, like for the matching and sorting expressions mentioned in the previous section,
tmk sets one variable for each field of the record, with the variable name matching the field
name. Example:

foreach rec $sorted_db {
set last_city "<undefined>"
db_with_record_do $rec {
if { ($last_city !'= "<undefined>") && \
($city !'= S$last_city) } {
puts stderr "---"
}
puts stderr "$lastname, $firstname, $city"
set last_city $city

}

This example goes through all recordstsbrted _db and outputs a line containing name
and city in the record. In addition to that, it separates records from different cities by a short
line.
If you want to create new database files from old ones, you can do this by simply writing
a new file and then writing records into that file using theoutput _record command,
e.g..
set f [open "sorted_addresses.db" w]
puts $f "# this file has been generated automatically”
foreach rec $sorted_db {
puts $f [db_output_record $rec]
}

close $f

Thedb output _record command will write the record in the form in which it is needed
for thedb_read command. For printing a record on the screen (to be read by a user) you
may useadb _format _record , which will print the record in a more readable form.

If you want to access a single field of a single record, you may use another command for
convenience:

42

db_value <record> <fieldname-

returns the value of the specified field in the specified record.

4.9.4 Advanced Record Definitions

So far, we have relied on the assumption that all kinds of fields needed in our sorting and
selection expressions are actually defined in each record. Since itis not easy to ensure this, it
might be more convenient to define default values for some fields so that there won’t be any
problem if some record does not define the field. Also, you may want to make use of some
common definitions etc., and you may want to construct “compound” fields automatically
which combine the contents of several simple fields. There are two constructs for making all
this possible:

db _record _header <script>
db record _cons <script>

The “header” script will be executed at theginningof each record definition, and the
“constructor” will be executed at thend after parsing all the commands irda _record
procedure. So you can define default field values as well as shortcuts in the header, and
construct compount fields and perform integrity checks in the constructor. Every ’field’
command will cause the corresponding local variable to be set to the value of the field. Here
is an example:

db_record_header {
field firstname
field lastname
field street ™

}

db_record_cons {
field name "$lastname, $firsthname"
if {I[info exists city]} {
set rec [db_format_record $therecord]
___ExitErr "must specify a city in $rec"

}

As you can see in the above example, the variditkeerecord is reserved and con-
tains all fields defined so far for the current record. You can output it via the functions
db format _record ordb _output _record

43

4.10 latex : Using LaTeX, BibTeX etc. (experimental!)

ThelATeX module is thought for automating the task of compilifigeKsource files into DVI,
Postscript, or PDF documents. In order to do so, the module has to generate several types
of dependencies and cdditex a number of times in order to make sure that all references
etc. are properly resolved. The module accomplishes this by doing the following:

e Detect all “main” ETpXfiles by looking for files matching.tex and searching for the
code\begin{document} (with some whitespace characters allowed in between).

e Generate dependencies to includdgX files by parsinginput statements.

e Generate dependencies to bibliography databases by psygihggraphy State-
ments.

e Analyse the output of Eatex invocation in order to determine if there remain unre-
solved references or citations. If unresolved references occulatex again. For
unresolved citations, if the used bibliography databases are newer théipsolrce,
runbibtex and then rudatex again twice.

The parsing mechanism used fmput and\bibliography statements is very
limited. For example, it cannot resolve macros or similar things. Also, it will only look for
files in the paths specified in thek variables$TEXINPUTS and $BIBINPUTS. If the
corresponding environment variable is SRETEXINPUTS is set to$env(TEXINPUTS) ,
and the path separators “.” are replaced by whitespace in order to obtain a TCL list. If
the environment variable is not SiTEXINPUTS defaults to"." . The same applies to
$BIBINPUTS.

The module defines rules for compilicigx into.dvi ,.dvi into.ps , and.ps into
.pdf . Corresponding to the values®§SE AUTQDVI, $USE AUTQPS, andSUSE AUTQPDF
the BTEX sources will be compiled into DVI, Postscript, and PDF documents. All targets are
generated in the local directory, not in thARCHdirectory (even if an empt$ARCHdirec-
tory will be created).

The used programs are determined by the varigblldsTEX, $BIBTEX, $DVIPS, and
$PSTOPDFEFlags can be set VIBBLATEXFLAGS $BIBTEXFLAGS $DVIPSFLAGS and
$PSTOPDFFLAGS

When callingtmk clean , the variableSLATEX CLEANSUFFIXES determines the
files to be deleted. The default is

*.dvi *.aux *.log *.bbl *.blg *.toc

The variablesSLATEX_ UNDEFREF and $SLATEX LABELS CHANGEDRletermine which
messages will cause the module to relatex or call bibtex

44

4.11 Writing Your Own Modules

Sorry, no useful tips yet.

45

Chapter 5

Installation and Configuration

5.1 Installing tmk on your system

Installingtmk is very easy. Just copy the files into your favourite directory. fhtle source
tree consists of three directories:

e src/ :thetmk script source file
e modules/ : the module script source code
e doc/ : the documentation TeX/dvi files

To installtmk on your system, just change the code line setting the varfablemkDir in
thetmk script, and include therc/ directory in your shell'ssSPATHvariable.

5.2 Configuring tmk

46

Appendix A

Misc tmk Functions and Variables

A.1 List Operations

Since most of the operationstimk modules and Makefile ’s deal with lists of file names,
it is useful to have some basic list operations at hand.

e lindex <list> <n>: picks the n’th item from a list [std. TCL]

e lappend <listname>- <elements .»: appends any number of elements to a list
variable

e Irange <list> <nl> <n2>: creates the sublist including all elements from index
<nl> to <n2>. May use “end” as placeholder for the last element of the list. [std.
TCL]

o Ifilter <list> <T-expr>: copies into a new list all those items for which the T-
expression is true. T-expressions are explained below. Example:

set x [Ifilter "a ab ¢ d e" {[string match a* $ITEM]}]
-> x = "a ab"

e Imap <list> <T-expr>: creates a new list, containing the results of evaluating the
expression for every item of the list and concatenating it to the return value list. T-
expressions are explained below. Lists are decomposed once so that it is vempteasy
to generate lists of lists. Example:

set x [Imap "a b c" {$ITEM SITEM}]

> x="aabbcc"

set x [Imap "a b c" {[list [list SITEM SITEM]]}]
> x = "{a a} {b b} {c c}"

47

e Iminus <listl> <list2>: subtracts<list2> from <list1>. Example:

set X [Iminus "a bcddee
> x ="abcece"

Xy d7

e Iremove <list> <pattern>: remove all elements froralist> which match<pattern>.
Example:

set x "ax bx by ay"
Iremove x "a*"
-=> x = "bx by"

e Icontains <list> <elem> tells whetherelem> is contained inclist>. Example:

set x [Ilcontains "a b ¢ d d e e
> x =1

a’]

The above-mentioned T-expressions are similar to those you can use witriea
statement, except that the special variable names are a little bit different, and the expression
is evaluated in the context of the caller of the list operation. You may use the following
special variables within such a T-expression:

e SITEM: the full name of a single list element

e $IROOQOT: all characters o$ITEM up to (but not including) the last dot (cf. TCL com-
mand[file rootname S$ITEM])

e $IEXT : all characters from the last dot on, or the empty string if name contains no dot
(cf. TCL [file extension $ITEM])

e $IDIR : all characters up to the last slash, or .’ if there are no slashes in the name (cf.
TCL [file dirname S$ITEM])

e SITAIL :all characters after the last slash, or the empty string (cf. [l tail
SITEM])

e SIBASE: all characters after the last slash and before the last ddfilef.root-
name ([file tail $ITEM]])

A.2 Execution, Logging, and Debugging

e assert <conditior>: evaluates the condition on the current level and exits with an
error if it does not evaluate to 1.

48

cmd <args>: performs geval exec <args>] at the global execution context
(uplevel #0). This implies that the first of the arguments will be executed as a
command in a shell, using all further arguments as its parameters values. The addi-
tional [eval] statement sees to that one single list of arguments will be generated,
even if<args> contains one level of nested lists lI8®€CFLAGScmd will also catch
system errors, print the error message, andtexit. Standard input, output, and error

are piped to the terminal.

_Log <msg>: outputs<msg> to the standard error channel. This is used for all im-
portant messages which the user should see even when not debugging. Log messages
can be turned off with thesilent command line option.

__Dbg <msg>: outputs<msg> to the standard error channel. This is used for all
those messages which can be helpful for debugging, but should not be printed by de-
fault. Debugging messages can be turned on withdebug command line option.

_ExitErr <msg>: outputs<msg> to the standard error channel and terminates
tmk . If debugging is switched on, also shows a stack trace at exit time.

SetlfUndef <varname- <value>: set variable to value if it is not defined already.

beforeBuilding <TCL script>: In order to execute commanedfter all variables

have been set in thEMakefile , the modules make use of theforeBuilding

command. Sometimes it can be reasonable to use it directly i Mekefile

too. The command appends the specified commands to a list. After having parsed
the wholeTMakefile , just before starting to build the first targatk will process

each element of that list (by means of a T{&lval] statement) in the order of their
appearance. This provides a means of performing additional checks and computations
after all user variables have been set to their final values. This is used heavily in most
of the modules.

A.3 Target Names, File Names, Directories

shortTargetName <target>: returns the short form of the specified target name.
This is done by removin$ARCHIf it is the last part of the path before the filename
(and if SUSE ARCHis set), and by removing trailing paths. The command is for
example useful when specifying additional dependencies vid¢pend command
and the target name comes from some external program like makedepend.

fullTargetName <target>: returns the complete target path and filename. If
$SUSE ARCHis set, and if the last element of the path is 8RCH it will be added

49

before the filename. This is useful if the target file has to be passed to some external
program outside of antarget command.

PathisAbsolute <path>: tells whether the specified path is an absolute path or
not. Depending on the operating system you're on, this can be hard to tell. On UNIX
systems, only absolute paths start with a ”/”.

NormalizeFilename <varname-: normalizes the filename contained in the spec-
ified variable. Changes the variable and returns the resulting value. Normalizing
means making filenames comparable. For example, collagBe./C to A/C
where possible.

__CreateDirRecursively <dir>: create a directory and all parent directories
which do not already exist

SearchinPathlist <filepattern> <pathlist>: for all paths in the pathlist, return
all files which match the pattepath/$filepattern

50

Appendix B

Index of Variables

This section lists all environment and global variables which are used byntkecore or

by any of the standard modules. The table also lists the section where more detail about the
function of the variable can be found, and cross links to other variables or commands which
are used in the same context.

Please note that all variable names starting with a double undersgose(reserved for
thetmk core system.

Global Variables

Name Meaning Sec.

$ARCH name of the currently active architecture; see also: 3.8
$ARCHBASE $USE ARCH

$ARGS arguments to be passed tonak subprocess, usually the 3.9

same arguments as have been passed to the ctirkent
process.; see alssubdir command$TMK

$AUTODEPEND list of automatically generated targets for reg-generating.1.9
dependency files; see alsPAUTOTARGEBEXCLUDE
$SAUTOTARGETS list of automatically generated targets; this variable is4.1.1

modified by several modules; after parsing fdake-

file , the SEXCLUDEtargets are removed from this
list and the remaning targets get built.; see also:
$MAKEAUTOTARGETSAUTODEPENELSEXCLUDE

$C command to be executed for compiling C code; see also: 4.2
$CFLAGS
$CC command to be executed for compiling C++ code; see 4.2

also: $CCFLAGS

51

$CCEXTENSIONS

$CCFLAGS

$CEXTENSIONS

$CFLAGS

$CLEANPATTERNS

$CURRENTDIR

$DEPENDEXCLUDE

$DIRTAIL

$DOXYFILE

$DOXYFILE.INPUT

$DOXYGEN

SDXX*

$EXCLUDE

$LD

list of file extensions which are supposed to mark C++ 4.2
files; these are used to generatetargets for all detected
C++ files; must be specifigdeforecalling the CC mod-

ule; see also3CEXTENSIONS
list of flags to be passed to the C++ compiler; see also: 4.2

$CC $CFLAGS
list of file extensions which are supposed to mark C files; 4.2

these are used to generate targets for all detected C
files; must be specifiedeforecalling the CC module; see

also: $CCEXTENSIONS
list of flags to be passed to the C compiler; see al$G; 4.2

$CCFLAGS
name pattern list for files which should be deleted whent.1.8

callingtmk clean ; additionally, theSARCHdirectory
will be deleted ifSUSE ARCHis on; see also: target

clean , $USEARCH
after parsing th& Makefile : current directory relative 3.10

to $PROJDIR; see also:$PROJDIR, $DIRTAIL , de-

fault module))
list of directory patterns; dependency files matching one 3.5

of the patterns will not be checked for time-stamp or ex-

istence during building.; see alsdepend command
after parsing th@Makefile : tail of the current direc- 4.1.4

tory (short directory name), also used as base name for
the automatic local library; see als& CURRENTDIR

default module . ' . .
name of the patched/final Doxygen configuration file.; 4.6

see also: $DOXYFILEINPUT, $DXX*, doxygen

module .) o
name of the input configuration file to be generated by 4.6

Doxygen which is to be patched kynk; see also:

$DOXYFILE, $DXX*, doxygen module
path/name of thdoxygen executable; see alsdoxy- 4.6

gen module
all variables starting wittbXX correspond to a Doxy- 4.6

gen config variable (without thBXX prefix); the vari-
ables defined in th@Makefile will be written into
the patched Doxygen config filkDOXYFILE; see also:

$DOXYFILE, $DOXYFILE.INPUT, doxygen module
list of targets to be excluded from the automatic targett.1.1

generation process; see al$&§UTOTARGETS
name of the linker command; see also$LDFLAGS 4.1

$LIBPATH, $SYSLIBS, $PROJLIBS

52

$LDFLAGS

$LEX

SLEXFLAGS

SLEXSUFFIX

$LEXSUFFIX_C

$LIBPATH

$LIB _OBJ

$LINK _LIB - TWICE

global flags for linking; see also: $LDPROC $LIB- 4.1

PATH $SYSLIBS, $PROJLIBS
program to be executed for generating code from lex- 4.5

icographical description files.; see als8LEXFLAGS

SLEXSUFFIX,$LEXSUFFIX_C
flags for $LEX; see also: $LEX, $LEXSUF- 4.5

FIX $LEXSUFFIX_C
suffix for the lexicographical description file (default is 4.5

|). Must be set before calling thHex module.; see also:

$SLEX, SLEXFLAGS $LEXSUFFIX_C
suffix for the code file to be generated from a lex file. 4.5

Must be set before calling thex module.; see also:

SLEX, SLEXFLAGS $LEXSUFFIX
list of additional library paths, will be used for generating4.1.2

-L and-rpath options for the linker; see als@&LD,

$LDFLAGS $SYSLIBS
after TMakefile parsing: list of.0 files to be in- 4.1.4

cluded in the automatically generated library; consists of
all .o SAUTOTARGETS excluding allSEXCLUDEar-
gets and all object files IBPROGOBJ FILES ; see also:

$USEAUTQLIB , $PROGOBJ FILES
switch on/off the duplicate linking of all libraries.; see 4.1.2

also: 3LDPROCS$LDFLAGS $LIBPATH, $SYSLIBS,
$PROJLIBS, $LIB _LOCATIONS

$SMAKEAUTOTARGETSwitch on/off the appending of auto-detected targets td.1.1

$MAKEPROGRAMS

$MAKESTATIC LIB

$MAKESHAREDLIB
$MOCFLAGS

$MODULES

the SAUTOTARGET®ariable; see also$AUTOTAR-

GETS
switch on/off (1/0) the automatic linking of executable 4.1.5

programs; see als§PROGRAMSLD, $LDFLAGS
switch on/off (1/0) the automatic creation of a static li- 4.1.4

brary for each processed directory; the library will con-
tain all automatically generated object files except for
those corresponding to executable programs; see also:
$USEAUTOPROGRAMSSPROGRAMSSAUTOTAR-

GETS
like SUSE AUTQLIB , but for a shared library; see also: 4.1.4

$SUSEAUTQLIB
flags for the QT meta object compiler, “moc”; see also: 4.3

$QTMOCIQTDIR, $QTPATTERNS
list of all modules called so far; see alsomodule , 4

$env(TMK _MODULEPATH)

53

$PROGRAMS

$PROGOBJ

$PROJDIR

$PROJLIBS

$PROJROOT

$QTDIR

$QTMOC

$QTPATTERNS

$SUBDIR EXCLUDE

$SYSLIBS

list of executables to be builitmk will try to link the cor- 4.1.5
respondingo files with the specified system and project
libraries in order to generate executables; see afid,

$LDFLAGS SUSEAUTOPROGRAMS
after TMakefile parsing: list of all object files corre- 4.1.4

sponding to an executable specified#BROGRAMSee

also: SMAKEPROGRAMS$SPROGRAMS
location of the project directory and the project makefile 3.10

TMakefile.proj . If no project makefile exists, de-

faults to the current directory; see als$PROJLIBS,

-proj and-noproj command line options

list of libraries from the current project to be 3.10
linked; a library is specified by the project direc-

tory it is in (e.g. a/b/X corresponds to$PRO-
JDIR/a/b/XI$ARCH/libX.a); see also: $PRO-

JDIR, $LD, $LDFLAGS $LIBPATH, $SYSLIBS
after parsing thefMakefile : parent directory of the 3.10

current project directory PROJDIR/..); see also:
$PROJDIR, $PROJLIBS, -proj and-noproj com-

mand line options
directory where the QT package is installed; used to infer 4.3

the location of QT libraries, include files, and the meta
object compiler; see als$QTMOCIMOCFLAGSFQT-

PATTERNS)
command to be executed in order to run the QT meta ob- 4.3

ject compiler “moc”. Default i$SQTDIR/bin/moc ; see

also: SMOCFLAGSFQTDIR, $QTPATTERNS
list of file patterns which refer to QT header files. These 4.3

files will be precompiled bynoc into the corresponding
.moc.C files, and themoc.o object files will be added
to the automatic targets.; see als6QTMOCSQTPAT-

TERNS L :
list of directory names which will not be considered for 3.9

automatic subdirectory processing; the curn®ARCH)/
will be added automatically.; see alsosubdir com-

mand,-local command line option
list containing either single library names (short form,4.1.2

e.g.mfor the math library), or sublists of the forfpath
libl lib2 lib3... } for direct library path assign-
ment; see also:$LDPROC $LDFLAGS $LIBPATH,
$LIB _LOCATIONS

54

$TARGETS list of all current toplevel targets (either specified by 3.1
build commands or at thenk command line; see also:

build commandtmk command line options
$TMK the command to be called for recursive subdirectory pro- 3.9

cessing. Usually contains the path to thik executable
of the current process.; see alssubdir command,

$ARGS

$USEARCH switch on/off (1/0) multiple architecture support; see 3.8
also: $ARCH

$YACC program to be executed for parser generation from 4.4

grammars; see also$YACCFLAGS$YACCSUFFIX
$YACCSUFFIXC, $YACCSUFFIXH

$YACCFLAGS flags for $YACC see also: $YACG $YACCSUFFIX 4.4
$YACCSUFFIXC, $YACCSUFFIXH
$YACCSUFFIX suffix of grammar files. Default ig. Must be set be- 4.4

fore calling theyacc module.; see als@YACC $YAC-

CFLAGS $YACCSUFFIXC, $YACCSUFFIXH
$YACCSUFFIXH suffix of the header files generated from grammar files. 4.4

Default ishh. Must be set before calling theacc mod-
ule.; see also$3YACC $YACCFLAGS$YACCSUFFIX

$YACCSUFFIXC
$YACCSUFFIXC suffix of the code files generated from grammar files. De- 4.4

fault is C. Must be set before calling thgacc mod-
ule.; see also$3YACC $YACCFLAGS$YACCSUFFIX
$YACCSUFFIXH

Environment Variables

Name Meaning Sec.

$env(HOME) user’s home directory; this is used to create a 5
.tmk directory for configuration cache files etc;

see alsotmk command, configuration
$env(TMK _HOME) directory in which themk system resides; see 5

also:tmk command, configuration
$env(TMK _MODULBIR) list of paths where to look fairmk modules; see 4

also:module command _
$env(TMK _TCLSH) TCL shell program to be used for executing the 5

tmk scripts; see alsamk command, configura-
tion

55

Appendix C

Index of Built-In Functions

Please note that all function names starting with a double underscpaed reserved for the
tmk core system.

56

Appendix D

Index of tmk Command Line Options

The syntax for callingmk is as follows:
tmk <options ..> <targets..>

After listing the desired options, the user may explicitly specify any number of targets to
be built. If no targets are giveimk will try to build all targets specified via thieuild
command in th&Makefile . Options are always preceeded by a’-’. The available options
can be listed by invokingmk -help

e -help : output short message explaining command syntax

e -prf , -dbg , -std , -opt , -max: select the code level from profiling (prf) up to
maximal optimization (opt)

o -f file : use 'file’ instead off Makefile

e -proj file . use 'file’ as project makefile [default: search upwards in the parent
directories forTMakefile.proj]

e -noproj : do not search for any project makefile

e -priv file . use 'file’ as private project makefile [default: search upwards in the
parent directories fof Makefile.priv]

e -nopriv : do not search for any private project makefile
e -local : skip subdirectory processing

e -force : build all specified targets unconditionally (meaning even if they do not need
to be updated).

e -debug /-nodebug : toggle debugging output on/off

57

-silent /-verbose : toggle logging output on/off

-mfdepend : include theTMakefile as dependency for every target to be built,
so if theTMakefile has changed, all targets will be rebuilt. If you want this to be
permanent, just set the global variaBleSelfDepend to 1.

There are some more options, which are not used normally. Please use with care.

-reconfig : causesmk to re-generate all config files for the currently active system

-arch name : setSUSEARCHo0 1 andsARCHto 'name’. This overrides the name
of the architecture, which is normally set automatically according to the different com-
ponents of your system and to the selected code level.

-rules : output the rule database instead of building the targets

-cmd ’script’ . execute the TCL script prior to reading the default module and
parsing thel Makefile

-prefix ’'string’ . print the specified string before every line of output [default
istmk:]. This is used internally bymk , e.g. for subdirectory processing

58

