
a tutorial to

Hartmut Schirmacher
Max-Planck-Institut für Informatik

– the TCL-based automation software
available from www.tmk-site.org

A Tutorial to tmk

(C)opyright Hartmut Schirmacher
Max-Planck-Institut für Informatik
Stuhlsatzenhausweg 85, 66123 Saarbrücken

[draft version, August 7, 2000]
available from www.tmk-site.org

Contents

1 Introduction 5
1.1 Overview . 6
1.2 How To Read This Tutorial . 7

2 TCL/TMK Language Basics 9
2.1 My First TMakefile . 9
2.2 Strings, Quoting, Escaping . 11
2.3 Variable and Command Substitution 13
2.4 String Operations . 15
2.5 List Operations . 17
2.6 Boolean and Numerical Expressions 22
2.7 TCL Control Flow . 23
2.8 Shell Commands and Environment 24
2.9 File Operations . 26
2.10 User-defined Functions . 27
2.11 Namespaces . 29
2.12 Dealing with Runtime Errors . 30

3 Targets and Dependencies 31
3.1 Targets and Dependency Chains . 31
3.2 Target Patterns and T-Expressions 33
3.3 Multiple Rules and Secondary Dependencies 35
3.4 Manipulating the Up-to-date State 36
3.5 Special/Pseudo Targets . 39
3.6 Exceptions and Exclusions . 42
3.7 Target Directories . 46
3.8 Debugging . 47

4 Modules 51
4.1 Loading a Module . 51
4.2 Delayed Evaluation and Variable Initialization 53
4.3 Module Configuration . 54
4.4 Module Macro Variables . 56
4.5 Example: a LATEXModule . 57

5 Projects And Directories 59
5.1 Project Directory and Project Files 59
5.2 Subdirectory Processing . 60
5.3 Project Location Path . 62

5.4 An Example Project . 62

6 Compiling and Linking 63
6.1 C++ Compiling and Linking with TMK 63
6.2 Exclusions and Non-Standard Tasks 68
6.3 Project Structure and Libraries . 69
6.4 Advanced Options . 73
6.5 Wrapping Libraries In Modules . 75
6.6 Binary Distributions . 76
6.7 Related Modules . 77

Bibliography 79

Index 79

CHAPTER 1

Introduction

TMK is a flexible and powerful tool for automating all kinds of tasks. It is built
on top of TCL, the tool command language created by John Ousterhout [?], and com-
bines the syntax and scripting features of this language with the rule-based functional-
ity of MAKE [?]. Furthermore, it adds a number of convenience functions, automatic
configuration features, and many custom modules for various applications, especially
in the context of software development.

Instead of inventing yet another syntax for defining MAKE-like targets and de-
pendencies, TMK is fully embedded in the well-established scripting language TCL.
Below is an example defining a rule for compiling C source files into the correspond-
ing object files, in TMK:

target
�
*.o � � $ROOT.c � �

$C $CFLAGS -o $TARGET $SRC
�
For readers experienced with MAKE and/or TCL, this should look somewhat familiar.
A classical Makefile would not look so much different.

Now if you try to imagine a Makefile for compiling a complete code directory
with multiple source files, automatic dependency update, architecture-dependent out-
put directories, shared libraries from other parts of the project, and external libraries

6 CHAPTER 1. INTRODUCTION

like QT/QGL installed somewhere in your system, you would need quote a compli-
cated and large Makefile. A typical TMakefile for this purpose looks like this:

module
�
cxx qt qgl math pthreads �

set link::PROJLIBS
�
otherProj/subdir1/subdir2 otherProj/base �

As you can see, one strength of TMK is to hide the complicated rule database as well as
the usually enourmous mass of site-dependent configuration options, and provide the
user/developer with a simple and convenient interface for building files automatically.
On the other hand, TMK can easily be customized and adopted for special tasks and
needs.

The goal of this tutorial is to teach a novel user most of the capabilities and
the basic handling of TCL/TMK. It contains neither a complete TCL language ref-
erence [?, ?, ?], nor a list of all TMK components [?].

1.1 Overview

Chapter 2 provides a short introduction to the TCL language and some minor TMK

convenience extensions, including strings and basic expressions, lists, variables, pro-
cedures, and control flow operations. All readers not familiar with the TCL language
are strongly recommended to start with that chapter in order to understand the re-
maining parts of the tutorial.

Chapter 3 introduces the most important component of the TMK core, which al-
lows defining targets and inter-target dependencies, similar to the basic functionality
of the MAKE tool[?]. You need this basically if you want to write your own modules
and custom TMakefile’s.

Chapter 4 explains how a number of functions can be parameterized and grouped
into a so-called module. Modules allow to define a number and rules in such way that
the actual TMakefile contains as few statements as possible.

Chapter 5 shows how to process directory trees, group directories in a common
project, and use project-wide global definitions. This chapter is mandatory for users
with more than just a files to be generated by TMK.

Chapter 6 gives insight into one of the major application of TMK, which is han-
dling and compilation of software projects in C/C++ language. The corresponding
modules provide a number of functions which handle many everyday sofware devel-
opment tasks automatically or with minimal cutsomization effort.

1.2 How To Read This Tutorial

This tutorial provides a guided tour through all major topics concerning TMK. In
order to understand all further examples, it is strongly recommended to start with
Chapter 2, at least with the first three sections. However, readers already familiar
with TCL may skip the entire chapter.

� I Want to Compile A Program
If you understand the TCL syntax, you may proceed directly to Chapter 6.

� I Want To Start A Software Project
In addition to Chapter 6, you will also need to know a bit about oranizing a
project in a directory tree, which is explained in Chapter 5.

� I Want To Get Rid Of All My Makefiles
If you use MAKE for many different kinds of tasks, you first need to read Chap-
ter 3 and understand how to define targets, rules, and dependencies. Then you
should proceed with Chapter 4 in order to learn how to organize classes of rules
in common modules.

� I Want To Learn Some TCL Basics
Chapter 2 provides a brief overview of the TCL language, some of its most
important predefined functions, and a number of extensions added by TMK.
However, if you seriously consider learning TCL, you should consider reading
one or more of the many elaborate introductions and tutorials available on the
web as well as in every good book store [?, ?, ?, ?].

I hope that this tutorial will help you using TCL and TMK for the tasks you need, and
that TMK will prove useful and efficient. Enjoy!

Hartmut Schirmacher

CHAPTER 2

TCL/TMK Language Basics

This chapter is supposed to introduce the most relevant components of the TCL

language and to some extensions added by TMK. A complete documentation of the
TCL language (up to version 7.6) along with a good tutorial can be found in John K.
Ousterhout’s TCL/TK book [?]. There are many more tutorials [?, ?, ?, ?]and refer-
ence books [?, ?, ?]available, many of them also including the more recent extensions
to the language.

If you want to test some of the examples from this text, you need to install TMK

on your system as explained in the TMK reference manual [?].

2.1 My First TMakefile

Let’s start by doing what many programming tutorials do: write a hello world pro-
gram. TMK is a command line tool which is invoked from the shell and will look for
a control file named TMakefile in the current working directory. If this file exists,
TMK will read it and execute the corresponding commands.

So first let us create a file named TMakefile in the current directory, and make
it contain the lines

10 CHAPTER 2. TCL/ TMK LANGUAGE BASICS

my first tmk script
puts "Hello, World!"

TCL programs are strings. If the string starts with a hash character (’#’), every-
thing up to the next newline character is treated as a comment (meaning the string is
ignored). If not a comment, the string is parsed word by word, separated by whites-
pace characters (space, tab, newline). The first word (e.g. puts in our example)
is interpreted as the command name, and all futher words are treated as command
arguments, until either an end-of-line or a semicolon (“;”) is read.

If properly quoted, a word may also contain whitespace or other specially treated
characters. Since the puts command expects a single argument, the argument "Hello,
World" is passed as a single quoted word. The puts command prints its argument
to some file stream defaulting to standard output (represented by the string symbol
stdout). If you want to print to standard error, the command would read

puts stderr "Hello, World"

Now we invoke TMK from within the command shell:

tmk
-> tmk: in directory ...
-> Hello, World!
-> tmk: no targets in ...

As you can see, TMK does a bit more than just executing the script. Since it usually
processes a lot of files and directories, TMK prints some log messages (preceeded by
the string ’tmk: ’) in order to inform the user about where it is and what it does. Since
we don’t need these log messages right now, we silence TMK using an additional
argument:

tmk -silent
-> Hello, World!

The -silent option suppresses log messages, and so TMK just prints what our
script produces as output.

If you want TMK to execute a different file instead of TMakefile, you can
specify the file name using the -f option. For example,

tmk -f myscript.tmk

will read and execute myscript.tmk rather than TMakefile. If you want to type
in your commands interactively rather than reading them from a file, you may use

2.2. STRINGS, QUOTING, ESCAPING 11

tmk -f -

which makes TMK start its interactive mode and read commands from the standard
input until it encounters an end-of-file (pressing Ctrl-D in most command shells)
or an exit command. In interactive mode, TMK echoes the result of each command
line, so that you immediately see the result of such commands as set.

If you don’t remember the name of a certain command line option, or need to
know where on your system you can find the TMK reference manual or tutorial, sim-
ply type

tmk -help

and you will get some hints about the command line options as well as pointers to
further documentation.

2.2 Strings, Quoting, Escaping

As we have seen in the previous section, a TCL script is simply a list of whitespace-
separated words. TCL interprets the first word as a command name (e.g. puts), and
then it reads arguments for that command until it encounters either a line break or a
semicolon.

multi-line version
puts "A"
puts "B"
puts "C"
one-line version
puts "A" ; puts "B" ; puts "C"

In TCL, everything is represented by a string. Strings do only need to be quoted
if they are to represent a single word and contain whitespace characters. If you want
to include spaces, tabs, or newlines into a word, you must use either double quotes
(”...”) or curly braces (

�
... �). Note that the word must start with the opening brace or

quote. Braces and quotes inside of a word are ignored. Braces are parsed recursively,
so they can be used to define nested lists.

12 CHAPTER 2. TCL/ TMK LANGUAGE BASICS

two arguments
commandA x y
one argument, quoted
commandB "x y"
one argument; quote inside word is ignored
commandB x"y
one argument, in braces
commandB

�
x y �

three arguments, containing nested lists
commandC

���
a1 a2 a3 � b

�
c1 c2 ���

Since there are several characters which have a special meaning in TCL, you
can escape their special role by preceeding them with a backslash. If you put a
backslash in front of a character without a special meaning, TCL will simply remove
the backslash. For example, you can include double quotes or curly braces in a string
using the backslash escaping mechanism:

one argument "x y"
commandA

�
x y �

two arguments, "
�
x" and "y � "

commandB \{x y\}

Since a line break acts as command separator, you need to escape the newline
character if you want to split a command over multiple lines.

split a long command
commandA "first argument" "second argument" \

"third argument" "fourth argument"

If you want to create a string with a number of linebreaks in it (for example, a
string representing a TCL/TMK script), the easiest way is to use curly braces, since
line breaks are not interpreted as command separators inside of curly braces:

puts
�
this is a large text which
expands over several lines! �

-> this is a large text which
-> expands over several lines!

2.3. VARIABLE AND COMMAND SUBSTITUTION 13

2.3 Variable and Command Substitution

You can store an arbitrary string in a variable and then use the variable instead of the
string. You can set the value of a variable using the set command, or append a string
using append. For expanding the variable’s value (called substitution), you simply
use the variable name, preceeded by a dollar character (’$’):

set x "Hello"
-> Hello
append x ", World!"
-> Hello, World!
puts "($x --- $x)"
-> (Hello, World! --- Hello, World!)

As you see, variable value expansion also works within double-quoted strings, in
contrast to within curly braces. The result of a variable subtitution is always treated as
a single word, except that the whole expression is re-evaluated using such commands
as eval (see TCL documentation).

If you want to place a dollar sign into a string, and not cause to expand a variable’s
value, you can escape the dollar sign by preceeding it by a backslash character (“$”):

set x "World!"
-> World!
puts "Hello, $x"
-> Hello, World!
puts

�
Hello, $x �

-> Hello, $x
puts "Hello, \$x"
-> Hello, $x

If you need to expand a variable within a string, and if the expanded value if
immediately followed by some letter, digit, or underscore, you need to use braces to
mark the begin and end of the variable name within the string:

set x "Hallo, "
-> Hallo,
puts "$xEcho!"
-> Error: can’t read "xEcho": no such variable
puts "$

�
x � Echo!"

-> Hallo, Echo!

14 CHAPTER 2. TCL/ TMK LANGUAGE BASICS

Similar to expanding variables, you can also substitute the result of a TCL/TMK

command into a string. For example the pwd command returns a string containing
the current working directory. If you want to use this string as an argument to another
command, you have to put the pwd command (together with its arguments, but this
command does not have any) into brackets. As for the variable expansion, command
substitution is done in double-quoted strings, but not within a pair of braces.

puts pwd
-> pwd
puts [pwd]
-> /home/username/tmk-tutorial
puts "you are in directory [pwd]"
-> you are in directory /home/username/tmk-tutorial
puts

�
you are in directory [pwd] �

-> you are in directory [pwd]

If you want to query whether a certain variable is defined or not, you can sim-
ply use the info exists command (see example below). Furthermore, you may
delete variables explicitly by using unset. TMK also defines a command named
set ifndef that allows to set a variable only if that variable is not already defined.
Furthermore, it also creates the necessary namespace if the variable name contains
namespace qualifiers (cf. Sec. 2.11).

puts [info exists XYZ]
-> 0
set_ifndef XYZ "Hallo!"
-> Hallo!
puts [info exists XYZ]
-> 1
set_ifndef XYZ "Echo!"
puts $XYZ
-> Hallo!
unset XYZ
puts [info exists XYZ]
-> 0
puts $XYZ
-> can’t read "XYZ": no such variable

In addition to scalar variables, TCL also supports so-called associative arrays. An
array is a map containing key/value pairs. By specifying the key, you can access the

2.4. STRING OPERATIONS 15

corresponding value. In TCL, both key and value can of course be arbitrary strings.
An array is accessed like a scalar variable, except that after the variable name, you
have to specify the key. You may not have a scalar variable and an array of the same
name.

set x("Mona") "Lisa"
set x("Heinz") "Ketchup"
puts $x
-> can’t read "x": variable is array
puts $x(Heinz)
-> Ketchup
puts [info exists x(Heinz)]
-> 1
unset x("Ketchup")
puts [array names x]
-> Mona

As you can see in the above example, you can do some more interesting things
with arrays using the TCL command array and its various subcommands. Please
refer to the corresponding manual page or the TCL/TK book [?] for details.

One interesting and very special array is named $env, end reflects the set of
active environment variables for the current process and all its future subprocesses.
This is discussed later in Sec. 2.8.

2.4 String Operations

TCL provides the string command for manipulating strings in different ways.
You can find a complete list of all available string subcommands in the TCL/TK
book [?]; we only briefly explain the most commonly used ones here.

The number of characters in a string (including all kind of whitespace etc.) can be
queried using the string length command. The range subcommand subcom-
mand returns the specified character range, with the first character within the string
having index 0, and the last character being represented by the symbolic string “end”.

Strings can be converted to upper or lower case using the toupper and tolower
commands, and leading and/or trailing whitespace can be removed using trim,
trimleft, and trimright.

16 CHAPTER 2. TCL/ TMK LANGUAGE BASICS

set x " abc d e f\n "
-> abc d e f
->
puts [string length $x]
-> 11
puts ":[string range $x 2 6]:"
-> :bc d :
puts ":[string range $x 0 end]:"
-> : abc d e f
-> :
puts ":[string trim $x]:"
-> :abc d e f:

There are also several tools for finding or matching substrings in strings. The
string first and string last command finds the first or last occurrance of
a substring within a string and returns the index of the substring’s first character, or -
1 if the substring is not found. string compare compares two strings and returns
0 if the strings match exactly, and -1 or 1 if the first string is “smaller” or “greater”
than the second in an alphanumerical sense.

set x "the quick brown fox"
-> the quick brown fox
set x1 [string first "o" $x]
-> 12
set x2 [string last "o" $x]
-> 17
puts [string range $x $x1 $x2]
-> own fo
puts [string compare "brown" "fox"]
-> -1

You can also query whether a string matches a certain glob pattern. Glob-style
patterns may contain question marks (“?”) and stars (“*”), representing arbitrary sin-
gle characters or a sequence of zero or more characters, respectively. This is similar
to glob file matching used in command shells.

2.5. LIST OPERATIONS 17

puts [string match *.h xy.h]
-> 1
puts [string match *.?+? abc.c++]
-> 1
puts [string match *.?? x.c]
-> 0

You can formulate even more sophisticated search and replace operations on
strings by using regular expressions. TCL supports these mainly through two com-
mands, regexp and regsub, which are beyond the scope of this tutorial.

2.5 List Operations

As we have heard before, a TCL script is simply a list of words. In fact, lists are one
of the most prominent features of TCL. A list is a possibly empty string containing
whitespace-separated words. As we have already seen, a word is either a string not
containing whitespace, or any other string enclosed in double quotes or curly braces.
Here are some examples:

empty lists
set x

� � ; set x "" ; set x " "
list containing three words
set x

�
abc "d e f g h" 123 �

list containing a single word
set x

���
a b c ���

There are several built-in TCL commands for creating, manipulating, and accessing
lists. The most often used ones are listed in the command overview 2.5.1.

18 CHAPTER 2. TCL/ TMK LANGUAGE BASICS

list ?word0? ?word1? ...
returns a list which contains the specified elements

lappend list-name ?word0? ?word1? ...
append a number of words to the named variable; changes the variable and
returns the retulting value

llength list
returns number of elements in list

lindex list index
returns element number index from list. The first word in the list has index
0

lrange list start-index ?end-index?
returns a list containing all elements from start-index to end-index. If
the end index is omitted or end, the last element in the list is assumed

linsert list index ?word0? ?word1? ...
returns new list, where the elements word0. . . are inserted before the element
at the specified index; returns new list

concat listA listB
returns a new list containing the elements of listA, followed by those of
listB

Commands 2.5.1: basic TCL list operations

Lists can be nested. Each word of a list can in turn be interpreted as a list, ac-
cording to the quoting rules discussed before. One must pay attention when using
whitespace characters and quotes, since TCL tries to preserve each list element ex-
actly as it was.

set x "1 2 3"
-> 1 2 3
append x " 4"
-> 1 2 3 4
lappend x " 5"
-> 1 2 3 4

�
5 �

lappend x 6 7
-> 1 2 3 4

�
5 � 6 7

The above example shows the subtle difference between append and lappend.
append appends a string to a string, and does not care about an interpretation of
the string’s contents. lappend treats the first argument as a list, and all further

2.5. LIST OPERATIONS 19

arguments as words to be appended to the list. If a word contains whitespace, TCL

plays smart and puts braces around the word all by itself, since else the whitespace
would get lost when the list is interpreted later.

TCL’s list operations allow putting together even complex data structures with
only a simple primitive data type. The only difficult thing is to keep in mind the
quoting rules, and the fact that TCL only performs a single level of substitutions at a
time. Here is another example demonstrating nested lists.

puts [llength "1 2"]
-> 2
set x "1

�
2a 2b 2c � 3"

-> 1
�
2a 2b 2c � 3

puts [llength $x]
-> 3
puts [lindex $x 1]
-> 2a 2b 2c
puts [list [list 1a "1b1 1b2" 1c] 2 3 [list 4a 4b]]
->

�
1a

�
1b1 1b2 � 1c � 2 3

�
4a 4b �

set x "a b c"
-> a b c
lappend x "d e f"
-> a b c

�
d e f �

lappend x g h i
-> a b c

�
d e f � g h i

There are even more list operations built into standard TCL, e.g. for searching
elements within a list (lsearch), or for sorting a list numerically or alphabetically
(lsort). For more details on these operations, please refer to Chapter 6 of Ouster-
hout’s TCL/TK book [?].

TMK defines some additional routines which are especially useful for dealing with
lists of filenames or options. These routines deal with mapping an expression to
each list element (lmap), filtering only those elements for which some expression
becomes true (lfilter), and removing certain elements from a list (lminus and
lremove). The syntax of these commands is listed in the command overview 2.5.2.

20 CHAPTER 2. TCL/ TMK LANGUAGE BASICS

lfilter list I-expression
returns new list, containing only those elements for which I-expression
becomes true

lmap list I-expression
returns new list, where each element is replaced by I-expression applied
to the original element. The I-expressionwill be evaluated one extra time,
so that the words of the expression will be included as separate list elements,
rather than the whole expression as a single element (see example on page 20)

lmatch list pattern-list
returns new list containing those elements of list that match any of the glob-
style patterns in pattern-list.

lminus listA listB
returns new list, containing only those elements of listA which are not con-
tained in listB.

lremove list-name pattern ?nargs?
removes from variable list-name all those elements which match the spec-
ified pattern. If nargs is specified, then also remove the nargs words
following each matched element removed.

Commands 2.5.2: TMK’s additional list functions

Both lfilter and lmap use item-dependent I-expression. These expressions
are evaluated separately for each list item, and may contain special variables which
are set to item-dependent values. For example, the variable $ITEMwill expand to the
complete list item, and $IROOT will expand to the root name of the list item (which
means all characters up to (and not including) the last dot (’.’). Here is an example of
what you can do with I-expressions:

puts [lfilter "100 20 30 44.4"
�
$ITEM > 30 �]

-> 100 44.4
puts [lmap "a b c"

�
$ITEM $ITEM �]

-> a a b b c c
puts [lmap "a.tif b.tif c.tif" \$IROOT.jpg]
-> a.jpg b.jpg c.jpg

Since the special I-expression variables can only be expanded within the com-
mand, they have to be escaped when calling the functions, e.g. by putting the I-
expression in curly braces, or by escaping each dollar sign with a backslash, as shown
in the example above.

Besides the I-expression variables $ITEM and $IROOT, there are some more

2.5. LIST OPERATIONS 21

which correspond mainly to the different filename operations provided by the TCL

file command (see [?]). Here is a list of the available I-expression variables:

$ITEM: complete list item value

$IBASE: item’s base name starting after the last slash and ending before the last dot;
the same as [file rootname [file tail $ITEM]]

$IDIR: item’s directory/path, ending before the last slash

$IEXT: item’s suffix/extension, starting with the last dot

$IROOT: item’s root name, ending before the last dot

$ITAIL: item’s tail, starting after the last slash

The list element removal operations work in a straightforward way. lminus lit-
erally subtracts the second set of elements from the first list, and returns the remaining
elements. lremove can be used especially well for removing unwanted flags or files
from any list variable. Here are some examples:

puts [lminus "a b c a b c d e" "a c e x"]
-> b b d
set x "plane34.gif car1.gif car2.tif car3.bmp bike4.jpg"
-> plane34.gif car1.gif car2.tif car3.bmp bike4.jpg
lremove x car*
-> plane34.gif bike4.jpg
set flags "-woff 13,14 -xy -woff 12 -O2 -DNDEBUG"
lremove flags -woff 1
-> -xy -O2 -DNDEBUG

Another very useful pair of commands is split and join. These two convert
between lists and strings in some sense. split splits a string using any of the speci-
fied characters as separator, and returns a list holding the resulting parts as elements.
join allows putting together all elements of a list by joining neighbouring elements
with a provided string.

22 CHAPTER 2. TCL/ TMK LANGUAGE BASICS

set x "abc:1,2,3:blabla;xy"
-> abc:1,2,3:blabla;xy
set y [split $x ":;"]
-> abc 1,2,3 blabla xy
puts [split [lindex $y 1] ","]
-> 1 2 3
puts [join $y " - "]
-> abc - 1,2,3 - blabla - xy

2.6 Boolean and Numerical Expressions

So far we have treated strings and lists as the primitive data types. For some opera-
tions, it is necessary to interpret the value of a certain string as a boolean or numeric
value. For this case, TCL defines the expr command. expr concatenates an arbi-
trary number arguments to a single list and evaluates this as a numeric expression. An
integer value of zero can also be interpreted as a boolean false, all other integers
are interpreted as true.

expr returns the resulting numerical value as a string (since this is TCL’s only
basic data representation). For example, you can use some basic math using integer
or floating-point representation:

puts "4 + 3*7"
-> 4 + 3*7
puts [expr 4 + 3*7]
-> 25
puts [expr 7.0/3.1]
-> 2.25806451613

In order to form boolean expressions, all kinds of boolean operators can be used
for comparing numbers or strings, and for building more complex logical expression
from simpler ones. The syntax is the same as in the C and C++ language.

puts [expr 7<3]
-> 0
puts [expr (7>3) && (4!=5)]
-> 1
puts [expr (4-3==1) && ![string compare xyz xyz]]
-> 1

2.7. TCL CONTROL FLOW 23

The string compare command returns 0 if the two arguments are identical,
1 if the first argument is ”bigger” than the second one in an alphanumerical sense,
and -1 else.

2.7 TCL Control Flow

Using the boolean expressions from the previous section, we can have a look at the
control flow commands known by TCL. The most important of all these constructs
is the if command. if executes TCL scripts depending on the value of boolean
expressions. Here is an example:

if
�
$x == "1" � �

puts "only a single one."
� elseif

�
$x == "2" � �

puts "there are two of them."
� elseif

�
$x == "3" � �

puts "if found three!"
� else

�
puts "more than three!!!"

�

The if expression can contain an arbitrary number of elseif branches, and
at maximum one else branche. Since if commands tend to stretch over multiple
lines, and since we usually do not want parts of the command to be evaluated before
the if command is actually executed, it is most convenient to put the expressions and
branches in curly braces, as shown in the example. As already mentioned in Section
2.2, line breaks are not interpreted as command separators in curly braces.

Besides the conditional execution of code, TCL also supports all kinds of loops.
When working with lists, it is often most convenient to use the foreach command,
which goes through a list, sets the loop variable to the current list element, and exe-
cutes a script containing loop variable expressions:

foreach x "x y"
�

puts "working on $x"
�
-> working on x
-> working on y

Using boolean expression as explained in Section 2.6, one can also use while
and for loops:

24 CHAPTER 2. TCL/ TMK LANGUAGE BASICS

set x 1
while

�
$x < 3 � �
puts "this is number $x"
incr x

�
-> this is number 1
-> this is number 2
for

�
set x 2 � � x > 0 � � incr x -1 � �

puts "this is number $x"
�
-> this is number 2
-> this is number 1

As you may have guessed from the example, the incr command increments the
value of a variable by the specified integer amount, with the default argument being
1. When specifying the conditional arguments for for and while, it is important to
quote the boolean expressions so that they will not be immediately replaced by their
initial value. The following example would lead to an infinite loop:

bad example - infinite loop
set x 1
while "$x < 2"

�
puts $x
incr x

�

In order to understand why the above example does not work, you must be aware
that in the while line, the double-quoted expression will first be evaluated to 1, and
then the loop iteration will be started with "1" being the conditional expression used
for testing loop termination.

Inside loop commands, you can use the break statement to exit the innermost
active loop, and the continue statement to continue with the next iteration of the
loop.

2.8 Shell Commands and Environment

One of the most important features of a scripting language like TCL is to execute
external programs as from the command shell. In TCL, this is realized through the
exec command:

2.8. SHELL COMMANDS AND ENVIRONMENT 25

set x [exec echo "Hallo, Echo!"]
puts $x
-> Hallo, Echo!

In the above example, the program echo is executed and prints a string to the
standard output channel. The exec command redirects and returns this output, so
that the result of the command can be used for further operations. Please note that the
first argument to exec is interpreted as the command name to be executed, and will
be searched in those paths currently contained in the PATH environment variable. All
further arguments are passed as separate parameters to that command.

Since environment variables often have influence on the behaviour of commands,
it is important to have a means for manipulating them from within your TCL/TMK

script. This is indeed very easy, since the environment can be accessed through the
global array named $env (cf. Sec. 2.3). So for example, you can append something
to the program search path like this:

append env(PATH) ":/home/myself/bin"

Environment manipulations have influence on the current process as well as that
of any subprocesses, e.g. those created by the exec command.

Like in a standard UNIX shell (like sh), commands can be combined using so-
called pipes, and commands can be executed in the background, so that TCL will not
wait for the command to terminate. Please refer to the TCL/TK book for details.

TMK defines a command called cmd which basically does the same as exec. In
contrast to exec, the output of the command is redirected to the real standard output
and error channels. Furthermore, unless the -silent command line option is used,
TMK will echo the issued command to the standard error channel, so that the user sees
which shell commands are executed in what order.

cmd echo "Hallo, Echo!"
-> echo Hallo, Echo!
-> Hallo, Echo!

The arguments are passed to the shell command as they are passed to exec or
cmd. This means that no file pattern matching takes place, e.g. the command exec
echo *.jpgwill simply output the string *.jpg. However, the shell-style pattern
matching (called globbing) can be applied using the glob command. glob takes a
number of patterns and returns a list of all files which match the current pattern. The
employable patterns are similar to those of the string match command (Section
2.4).

26 CHAPTER 2. TCL/ TMK LANGUAGE BASICS

cmd ls
-> ls
-> x.tif y.gif a.gif b.jpg c.jpg d.bmp
puts [glob *.jpg *.tif]
-> b.jpg c.jpg x.tif

Another important command is pwd, which returns the current working directory
of the process in which TMK is running.

2.9 File Operations

One of the most important kind of operations are those dealing with files. TCL pro-
vides a number of very convenient commands for querying the status of files and di-
rectories, or for querying and constructing the different parts of path and file names.
Most of these operations are done via the TCL file command. The examples below
are UNIX-style, but the same kind of operations also work with Windows-style file
and path names.

puts [file readable /etc/passwd]
-> 1
puts [file isdirectory /etc/passwd]
-> 0
puts [file dirname /etc/passwd]
-> /etc
puts [file tail /etc/passwd]
-> passwd
puts [file extension /etc/init.d]
-> .d

Another important means of manipulating paths and filenames are the two com-
mands join and split, which allow splitting a path so that its components become
the elements of a list, and for re-joining the components in order to obtain a path
again. Please see Section 2.5, page 21 for details.

TCL defines a lot more file operations, like size, rename, copy, delete, or
volume. There are also commands for constructing paths in a platform-independent
way. Please have a look at the TCL/TK book [?] or the system manual page for more
details on the different options of the file command.

TMK defines two additional commands for reading the context of a file and ap-
pending in to a string, and for writing back a string into a file. Both commands expect

2.10. USER-DEFINED FUNCTIONS 27

a filename and a variable name.

set text "Hello, World!"
write_file /tmp/myfile.txt text
puts [file exists /tmp/myfile.txt]
-> 1
read_file /tmp/myfile.txt new_text
puts $new_text
-> Hello, World!

If the specified file does not exist, read file will append an empty string.
write file has an additional optional argument. If you specify “append” as third
argument (e.g. write file xy.txt text append), the contents of the vari-
able will be appended if the file exists, rather than replacing its previous contents.

2.10 User-defined Functions

Since TCL is a full-fledged scripting language, it also supports user-defined proce-
dures and funtions. The TCL proc command takes three arguments: the name of
the procedure to be defined, a list of parameter names, and a TCL script. The actual
parameters values are assigned to local variables that have the specified parameter
names. Here is an example:

proc OutputTriple
�
a b c � �

puts "($a,$b,$c)"
�
OutputTriple 1 2 3
-> (1,2,3)
OutputTriple X abc Y
-> (X,abc,Y)

A procedure always returns the return value of its last command. If you want to
specify an explicit return value of return in the middle of the procedure body, you can
use the return command:

28 CHAPTER 2. TCL/ TMK LANGUAGE BASICS

proc MyFunc
�
x � �

if
�
$x<5 � �
return "smaller than five"

� else
�

return "greater or equal to five"
�

�
puts [MyFunc 3]
-> smaller than five

As already stated, the actual function call parameters are made available through
local variables. All variables that you define within the function body (e.g. using
the set command) are considered local. By default, you do not have access to any
variables declared outside the function body.

set GLOBAL_VAR "Hallo"
proc MyProc

� � � puts $GLOBAL_VAR �
MyProc
-> can’t read "GLOBAL_VAR": no such variable

If you want to access a global variable (e.g. one that is defined outside any func-
tion or procedure body), you have to declare a variable name as global:

proc MyProc
� � �

global GLOBAL_VAR
puts $GLOBAL_VAR

�
set GLOBAL_VAR "Hallo"
MyProc
-> Hallo

Besides using local and global variables, you can also have access to some in-
between context level. For example, imagine a procudure B called from inside an-
other procedure A. If you want to access A’s local variables within B, you can do this
by making those variables known using the upvar command. Similarly, you can
evaluate expressions in the context of the calling function (or any higher-level con-
text, up to the global context) by using the uplevel command. Last, but not least,
you can define procedures with a variable number of arguments by using the special
argument name args, and define default values for some or all arguments. Please
refer to chapter 8 of the TCL/TK book [?] for details, or to the proc manual page.

2.11. NAMESPACES 29

2.11 Namespaces

So far, we have considered all our global variables and functions to shared the same
logical space. However, TCL provides a concept named namespace in order to group
variables and procedures into different spaces that are independent from each other.
Namespaces in TCL are managed dynamically, and you can do a lot of things using
the namespace TCL command. Here is an example:

namespace eval mySpace
�

variable var1 "xyz"
proc proc1 args

�
... �

puts "var1 is $var1"
�
puts "mySpace’s var1 is $mySpace::var1"

This code creates a new variable and a procedure, both in a namespace called myS-
pace. The variableworks the same way as set, but makes sure that the variable
is assigned to the current namespace. If we would use set instead, and if a global
variable of the same name existed, the set command would affect the global variable
rather than allocating a new one in the current namespace.

As you can see in the example, you can use a namespace variable inside the same
namespace as you would use any other variable. This way uses so-called unqualified
names. Like shown in the last line of the example, you can also address a namespace
variable outside the namespace by using namespace qualifiers. The double colon ::
is used as the namespace separator, and you can nest namespaces as deeply as you
want:

namespace eval ns1
�

namespace eval ns2
�

namespace eval ns3
�

variable var1 "xyz"
�

�
�
puts "...var1 is $::ns1::ns2::ns3::var1"

You may not set a namespace variable before its namespace has been created, but you
can create namespaces using namespace eval as in the examples above. If you
want to make sure that a variable exists before you use it, you can create it using the
variable statement without specifying a value for the variable:

namespace eval xyz
�
variable x �

lappend xyz::x "hello" "world"

An unqualified variable name is first looked up in the currently active namespace,
and then in the global namespace (::). It is not looked up in parent namespaces
recursively. Take this example:

variable x 10
namespace eval a

�
variable x 20
puts $x
namespace eval b

�
puts $x

�
�

So this piece of code produces the results 20 and 10, since in the innermost namespace
’x’ refers to the variable in the global namespace.

2.12 Dealing with Runtime Errors

Sometimes, TCL commands may fail, and the TCL shell will terminate with a cryptic
error message. If you want to prevent this, you can always “catch” error conditions
and prevent TCL from exiting. This is done by the catch command, which expects
two parameters: the TCL script to be executed, and a variable name for storing the
result of the script execution. If catch returns 0, no error has occurred, and you may
use the command’s result stored in the specified variable. If catch returns with a
non-null status, you can simply continue with your script, or output the error message
stored in the result variable.

if [catch
�
file delete mytext.txt � msg

�
puts stderr "could not delete file ($msg)"

� else
�

puts stdout "file deleted."
�

CHAPTER 3

Targets and Dependencies

Targets and dependencies are some of the core features of TMK by which the
functionality of MAKE is embedded into the TCL language. They are very popular
concepts for doing work only if it is needed, and are commonly used in software
development, systems administration, and other software automation areas.

This chapter starts with some simple examples of how to define targts, and then
plunges into some advanced features and subtle details, e.g. what exactly happens
in the case of many dependencies and multiple rules for the same target, and how
exceptions from general rules can be defined.

3.1 Targets and Dependency Chains

A target defines how some target file can be created from a number of source files, or
primary dependencies. The target procedure has three arguments: a list of target
patterns, a list of source file expressions, and a TMK script.

32 CHAPTER 3. TARGETS AND DEPENDENCIES

puts "Hello!"
target hello.y hello.x

�
set txt

� �
read_file "hello.x" txt
append txt "\nThis is an additional line"
write_file "hello.y" txt

�

The above example states that the target file hello.y can be built from the
source file hello.x. The corresponding building rule (the script provided as third
argument to the target procedure) reads hello.x into the variable $txt, ap-
pends a line of text, and then writes the resulting string into the file hello.y.

Now, if you write the above example into a TMakefile and invoke tmk, you
will get the output Hello!, but nothing else will happen. This is because you have
only defined the target, but not told TMK to actually build it. This can be done in two
different ways, either by specifying the targets to be built on the command line when
invoking TMK:

tmk hello.y

or by declaring it a default target using the build command in the TMakefile:

target hello.y [...]
build hello.y

Targets specified at the command line override the default targets specified using
build. The resulting targets that will be built are called top-level targets. The
actual building process starts after the TMakefile has been read and processed
completely.

For every top-level target to be built, TMK will first perform an up to date check. A
target is up to date if it exists and if it is newer or of same age as all its prerequisites. In
our example, this means that hello.y must exist and must be newer or of the same
age as hello.x. If not, the target needs to be updated, and the corresponding rule
(the script provided as third argument to the target command) will be executed.

In addition to just checking the age of files, each prerequisite is treated as a new
target recusively. This way you can define arbitrary dependency chains that define
the order of rule execution.

3.2. TARGET PATTERNS AND T-EXPRESSIONS 33

target A
�
B C � �

puts "(A <- B C)"
�
target B

�
D E F G � �

puts -nonewline "(C <- D E F G) "
�
foreach x

�
C D E F G � �

target $x
� � "puts -nonewline \"($x)\""

�
build A

Running the above example clarifies the order in which dependency chains are pro-
cessed. TMK is told to build target A. For this, it recursively checks B and C. B requires
the source files D,E,F,G, which are unconditional targets, meaning that they can be
built without any prerequisites. After doing this, TMK can create B from D E F G.
Then it builds C, and then A from B and C. So calling TMK would cause the following
output:

-> (D) (E) (F) (G) (B <- D E F G) (C) (A <- B C)

As you can see, targets are not really required to be real files. You can read more this
topic of pseudo targets in Section 3.5.

3.2 Target Patterns and T-Expressions

The last example in the previous section showed that if you define a rule for a number
of different targets, you must have some means of defining expressions that use the
actual target name later when the rule is applied. A better way of doing this than
in the past example is to use T-expressions. Within a T-expression, you can use a
number of special variables that represent different parts of the target name.

Additionally, in order to easily define targets for a whole class of files rather than
just explicit target names, TMK allows to specify target patterns. Here is an example:

target *.y
�
$ROOT.x � �

set txt
� �

read_file $SRC txt
append txt "\nThis is an additional line"
write_file $TARGET txt

�

34 CHAPTER 3. TARGETS AND DEPENDENCIES

The above example defines a rule for creating arbitrary .y files from corresponding
.x files. The first argument for the target command tells that the specified rule
can be applied to any target ending in .y. Instead of specifying a fix file name, you
can use an arbitrary glob expression1, or even a list of glob expressions.

The second argument, which defines the primary dependencies for the target, is
a T-expression. T-expression are evaluated in the global context, implying that all
global variables can be accessed without further effort. The expression in the example
contains the special target-dependent variable $ROOT that expands to the root name
of the actual target. T-expressions are very similar to I-expressions discussed in Sec.
2.5, page 20. The variables defined in the context of a T-expression are as follows:

$TARGET: complete target name

$BASE: base name starting after the last slash, ending before the last dot

$DIR: target’s directory/path up to the last slash

$EXT: target’s suffix/extension starting with the last dot

$ROOT: root name ending before the last dot

$TAIL: target’s tail starting after the last slash

The T-expression variables can also be used inside the rule that is provided as
third argument to the target command. Additionally, the special following special
variables can be used within the rule.

$SRC: list of source files (primary dependencies)

$NEWER SRC: list of source files newer than the target [NOT SUPPORTED YET]

$SECONDARY: list of secondary dependencies [NOT SUPPORTED YET]

So you can specify a script for building the target from the source files even though
the exact name of these files is not known when specifying the rule. It is important
to note that all these target-dependent expressions cannot be evaluated at the time the
target is declared, since at that point the actual target name is not known in general.
So it is imperative to delay their evaluation, e.g. by escaping the T-variables with
backslashes, or by putting the expression in curly braces (cf. Sec. 2.2).

An important fact that has not been mentioned yet is that unless specified other-
wise, all generated files will be put into an architecture-dependent target directory,

1Please refer to Sec. 2.4 or the TCL string manual page, for details.

3.3. MULTIPLE RULES AND SECONDARY DEPENDENCIES 35

beacause the target-dependent variables will automatically be preceeded by a direc-
tory name. This special feature of TMK will be ignored here for the sake of clarity,
and will be treated later in Sec. 3.7.

In addition to the mentioned T-variables, you can also access variables that con-
tain those parts of the target name that have been matched by one of the wildcards
(“*” or “?”) in the target pattern. The characters matched by the first wildcard is
accessible via $0, the next via $1, and so on. This way it is really simple to define
arbitrary rather complicated mappings from target names to source file names:

target A*.x?
�
B$0.y$1 C$0.z[expr $1 - 1] � �

puts "$TARGET <- $SRC"
�
If you run this rather “wild” example for the target A5.x3, the rule would print the
following message:

A5.x3 <- B5.y3 C5.z2

As you can see, you can also include arbitrary function calls like expr in the example
above, if you need even more complicated target-dependent expressions.

3.3 Multiple Rules and Secondary Dependencies

Since there might be several possibilities of how to generate a certain target, TMK

allows to declare multiple rules for the same target. The question now is how TMK

determines which rule has to be applied.
For example, you may want to define a rule for compiling source code into an

object file. For a C language file, you want to use a compiler called myC, and for
C++ the compiler is called myCXX. C files have the suffix .c, and C++ files may
end in .cc, .cpp, .cxx, or .C. The name of the output file is specified using the
compiler’s command line option -o.

target *.o
�
$ROOT.c � �

cmd myC -o $TARGET $SRC
�
foreach suffix

�
cc cpp cxx C � �

target *.o \$ROOT.$suffix
�

cmd myCXX -o $TARGET $SRC
�

�

36 CHAPTER 3. TARGETS AND DEPENDENCIES

This example2 defines a number of rules for creating .o files. Now, if you want to
build some target x.o, all these rules have to be taken into account. TMK first finds
all rules that match a given target. The order of these rules is not defined. For every
rule, TMK first tries to build all source files recursively, as explained in Sec. 3.1. If all
source files have been brought up to date successfully, TMK executes the current rule
for the target and skips all other rules. If at least one of the required source files could
not be generated (e.g. does not exist, and there is no rule to build it), TMK skips this
rule and tries to apply the next one. If this does not work for any rule, TMK exits with
an error.

In addition to the source files or primary dependencies, one can also declare any
number of secondary dependencies for a target. Secondary dependencies are files
which are required to make a target, but are not associated with any rule. As a result,
any rule will fail if a secondary dependency file is missing or cannot be built.

For example, you can use secondary dependencies control the order in which
targets are built, or you can declare files that have to be checked regardless of which
rule will be applied. Classically, files included from the source files are declared this
way, because they are a sort of “second order” source files for the target.

The TMK command for defining secondary dependencies is called depend, and
the syntax resembles that of target, except that there is no need for a rule. Here
is an example TMakefile in which the order of execution is controlled through
depend:

target
�
A1 A2 B � � � �

puts "This is $TARGET"
�
depend

�
A* � � B �

build
�
A1 A2 �

When running this example, B is built before A1 and A2, because the latter two
depend on it.

3.4 Manipulating the Up-to-date State

Sometimes it is necessary, or at least convenient, to pretend that some file has or has
not changed, or to enforce that a certain target be built, even if it would not need to
according to the usual rules.

2Please note the subtle difference between the source file name components in the second target
expression. $ROOT is a special T-expression variable that can only be evaluated later when the real
target name is known, so it has to be escaped using the backslash. $suffix is the loop variable and
has to be evaluated immediately in order to expand to the desired suffix.

3.4. MANIPULATING THE UP-TO-DATE STATE 37

3.4.1 Option -force

If you want a certain target to be rebuilt, but TMK thinks that it is up-to-date, you
can force the building of that target by using the -force command line option.
When -force is active, all top-level targets (default targets, or those specified at the
command line)) will be rebuilt, even if they seem up to date. If these targets depend
on other targets that have to be rebuilt first, that will be done as well.

3.4.2 Option -up

You can also make TMK pretend that a number of targets have just been updated and
are thus newer than all other files. The -up command line option expects a list of
targets which will be marked up-to-date explicitly after reading the TMakefile.
The list ends with the end of the command line, the next option (starting with ’-’), or
the explicit end-of-options symbol ’--’. Here is an example:

tmk -up file1 file2 -- file3

In this case TMK will build the toplevel target file3, and pretend that file1 and
file2 have just been updated.

3.4.3 Option -nup

As the counterpart to the -up option, -nup pretends that the specified targets have
not been touched by marking them internally with the oldest possible time stamp.
This works the same way as -up , and it also works for a non-existing target: TMK

will pretend it is there and has not been updated for years. As a consequence of this,
you can even apply -nup to pseudo targets such as ALWAYS BUILD (see Sec. 3.5).
In that case the targets that exist, but are usually always built, will not be rebuilt.

Of course you can combine all the different target-manipulating command line
options like in the following example:

tmk -up file1 file2 -nup ALWAYS_BUILD -- myTarget

3.4.4 Option -mfdepend

In many cases, the contents of the generated files strongly depend on the contents of
the TMakefile, because certain flags and options that are set in the TMakefile
will change the behaviour of the programs that generate the files. So a conservative
dependency policy would depend each target on the TMakefile by which it is built.
However, since not every change in the TMakefile really changes all the generated
files, this is not TMK’s default behaviour. You can achieve that additional condition by

38 CHAPTER 3. TARGETS AND DEPENDENCIES

using the command line option -mfdepend , which will add the specified control
file (either TMakefile or the file specified using the -f option) as an additional
dependency to every target.

3.4.5 Up-to-date Manipulation Functions

Sometimes it is convenient to control the pretended state of a target from within a
TMakefile or module. To this end, TMK provides some basic functions for setting
and querying a target’s state in TMK’s internal cache. Those functions are listed in
command overview 3.4.1.

target updated target ?time? ?debug-level?
Marks the specified target as updated. Time is measures in seconds since 1970.
If no time is specified, [clock seconds] is used. debug-level tells
on which debugging level this operation shall be visible, and defaults to 1. 0
means that an update message appears even if no debugging options have been
specified.

target untouched target ?time? ?debug-level?
Marks the specified target as unchanged, so it will only cause dependent tar-
gets to be updated if they are newer. time is again the timestamp in seconds.
It defaults to the file modification time if the targets exists, and to 0 if not.
debug-level: see target updated.

target failed target msg ?debug-level?
Marks the specified target as failed, meaning that TMK was not able to generate
it at all. This will cause dependent targets to fail, too. msg is a string telling the
reaseon for the failure. debug-level: see target updated.

target state target ?varName?
Returns the state of the specified target if it is already in the internal cache, or
”” if the target is not in the cache. If the result is updated or untouched,
the stored timestamp is written into the variable $varName. If failed is
returned, $varName will contain a message explaining the reason for the fail-
ure.

Commands 3.4.1: target state operations

Using one of these functions, you can at any time (e.g. while parsing the TMake-
file, or after executing a rule) pretend that a certain target has just changed, has not
been touched, or has failed to be built. This can for example be very useful if the up-
to-date test for a certain target is a bit more complicated than just checking the time
stamp. For example, let’s say that some file X must be rebuilt whenever it does not

3.5. SPECIAL/PSEUDO TARGETS 39

exist or the the file X.aux is newer and contains the phrase "need to rebuild
X". This could be done as follows:

target X
�
X.aux � �

if
�
[file exists $TARGET] && [file exists $SRC] � �

if
�
![grep "need to rebuild $TARGET" $SRC] � �

target_untouched $TARGET
break

�
�
puts "rebuilding $TARGET"
...

�
When the target script is executed, we know that either the target does not exist, or it
is older that the .aux file. So we only need to check the case in which both source
and target exist, and look if the desired string is contained in the file (which can be
done by TMK’s grep command, for example). If the string is not there, then the
target does not need to be updated, and so the execution of the target script will not
cause any dependent targets to be rebuilt.

Note that in order to cause a premature end of the target script, you can use the
TCL break command to skip the rest of the rule.

3.5 Special/Pseudo Targets

Usually, target names represent files that are created by applying the corresponding
rule. If the rule does not really generate that file, the target is called a pseudo target.
For example, you can define a default target help that outputs the available “real”
targets for the user:

target xy ...
�
... �

target abc ...
�
... �

target help ALWAYS_BUILD
�

puts stderr "available targets:"
puts stderr " xy: ..."
puts stderr " abc: ..."

�
build help

Now, if the user just calls tmk, the pseudo target will simply output some informative
text.

40 CHAPTER 3. TARGETS AND DEPENDENCIES

3.5.1 Target ALWYAS BUILD

The target name ALWAYS BUILD is simply a pseudo target that will never be up
to date. Internally, TMK just marks this target as updated in its target cache (cf.
the target updated function in Sec. 3.4.5). So targets that somehow depend on
ALWAYS BUILD will have to be rebuilt every time.

In the above example, one could also specify an empty source file list (
� �) instead

of the pseudo target ALWAYS BUILD. If a target has no primary dependencies, this
means that it can be built unconditionally. This is nearly the same as if specifying
ALWAS BUILD, but an unconditional target does not need to be rebuilt if it already
exists and does not have any further dependencies (cf. Sec. 3.3).

3.5.2 Target clean

Another predefined target is called clean. Its task is to delete all files that have been
generated through running TMK. If you are using the target directory mechanism as
described in Sec. 3.7, this is quite easy since TMK only needs to remove the directory
that contains all the generated targets. If this mechanism is switched off, you should
also define how to remove the results of your targets and modules. You can do this
by simply defining new cleaning targets and make clean depend on them:

these are the locally defined targets
target

�
a b c xyz � ...

target
�
bla blub � ...

this is how to clean up
target myclean ALWAYS_BUILD

�
file delete -force -- a b c xyz bla blub

�
depend clean myclean

In the above example, the myclean target removes all potentially generated files.
Since clean depends on it, mycleanwill also be executed when the user calls tmk
clean.

3.5.3 Target depend

Another kind of predefined pseudo target is called depend. This is mainly used in
conjunction with compilation (cf. Chapter 6), but in general its purpose is to update
files that contain dependency information. For example, in the context of compila-
tion, the compilers output information about which header and source files are in-
cluded from within other files. The compilation modules store this information in

3.5. SPECIAL/PSEUDO TARGETS 41

dependency files (usually called .dep), and processes these files in order to gener-
ate secondary dependencies before starting the up-to-date check. If file or directory
names are changed, it may sometimes be necessary to update the dependency files.
This is done by calling tmk depend. As for the clean target, you should provide
additional depend targets if you create and process dependency files other than the
predefined ones.

The TMK default module defines a helper function named read dependencies,
which parses a dependency information file and returns the list of dependencies for
the specified target. If the file does not exist, the function returns the value AL-
WAYS BUILD, so that the target will be built unconditionally.

The file format of a dependency file is that produced by tools such as makede-
pend for use in a traditional Makefile. It simply contains lines of the form

target-file: ?file1? ?file2? ?file3? ...

and long lines may be split over several lines by putting a backslash (”\”) at the end
of the partial line. This representation translates directly into the TMK function call

depend target-file
�
file1 file2 file3 ... �

3.5.4 Parameter-Changing Targets

You can also use pseudo targets to pass optional parameters to your TMakefile or
script. For example, you may have a target that depends on some global variable:

set N 5
target hello

� � �
for

�
set i 0 � � $i < $N � � incr i � �
puts -nonewline "Hello!"

�
�
This silly example prints its message a certain number of times, as specified by the
global variable N. If you want to let the user change that number, you could specify
another pseudo target which redefines N:

target n=*
� � �

set N $0
�
Now, if you specify an additional target like n=10 on the command line, TMK will
try to build that target, and set N accordingly:

42 CHAPTER 3. TARGETS AND DEPENDENCIES

tmk n=3 hello
-> Hello!Hello!Hello!

Here it is important to watch the order in which the targets are specified. TMK

processes the targets in the order of their build commands, or in the order specified
at the command line. If TMK would first build hello and then n=..., the variable
$N would be set after it has been used.

3.6 Exceptions and Exclusions

When you use a number of general rules for building your projects, e.g. by means of
modules as described later in Chapter 4, you often come to a point where you would
like to define an exception from the usual rule, just for a certain target or a class of
targets. This can either be done by temporarily changing the value of some variable
that is used within the rule, or by defining a totally different rule just for these targets.

Another frequent operation is to exclude certain targets from being processed at
all (e.g. a program that would not compile, but it currently not really needed), or
to avoid the checking of time stamps for certain directories which are considered
“constant” because it is known that these (system) files do not change often.

3.6.1 Changing Variables Within Certain Rules

The exception method provided by TMK offers a simple means for achieving all
this. Have a look at the following example:

set FLAGS "x y z"
target

�
A B1 B2 C � � � �

puts "$TARGET: FLAGS = $FLAGS"
�
build

�
A B1 B2 C �

The example is simple enough; it defines the same dummy rule for four different
targets. The rule uses the global variable $FLAGS. Now we add some exceptions:

exception
�
B1 � � FLAGS � �

lremove FLAGS y
�
exception

�
B* � � FLAGS � �

lappend FLAGS abc
�

3.6. EXCEPTIONS AND EXCLUSIONS 43

The first exception command removes something from FLAGS specifically for
target B1. The second exception appends something to FLAGS for all targets starting
with the letter B.

The exception command takes three parameters: a list of target patterns for
which the exception is going to be executed, a list of global variables which will be
saved before the exception and restored afterwards, and the actual exception script
that will be executed for the specified targets.

Now if you run TMK, you get the following output:

-> A: FLAGS = x y z
-> B1: FLAGS = x z abc
-> B2: FLAGS = x y z abc
-> C: FLAGS = x y z

As you see, you can define multiple execptions for the same target. However,
the order in which the exception scripts are executed is not defined. TMK not only
restores the specified variables to their previous values, but it also unsets the specified
variables if they have not been set before executing the exception. If you change the
value of some variable that you do not specify in the argument list, then this change
will be globally visible for all commands that are executed lateron. However, you
should never use this effect for globally modifying variables, since the side effect
created by this kind of programming can become quite monstruous, especially in the
context of rules which are executed in arbitrary order.

3.6.2 Replacing Rule Scripts

So far we have only changed the value of variables in order to change what happens –
after this modifications the rule script has been executed as usual. It is also possible to
override the rule script completely and define your own actions through the exception
script.

target
�
A1 A2 A3 � � � �

puts "usual rule for $TARGET"
�
exception

�
A1 � � � �

puts "additional commands for $TARGET"
�
exception

�
A2 � � � �

puts "alternative rule for $TARGET"
exception_return

�
build

�
A1 A2 A3 �

44 CHAPTER 3. TARGETS AND DEPENDENCIES

In this example, a common rule for three targets is defined. For target A1, an excep-
tion provides an additional rule that is executed before the usual rule. For target A2
however, the special command exception return has the effect that the usual
rule will not be executed , so that the scripts provided by all matching exceptions will
replace the usual rule. If you specify multiple exceptions for the same target and use
exception return in one or more exceptions, all exceptions will be executed in
an unspecified order, and after that the rule will be skipped.

3.6.3 Excluding Targets and Dependencies

If you want to prevent some target or target pattern from being processed at all, simply
add it to the list $EXCLUDE. Whenever TMK is told to build a target matching any of
the $EXCLUDE glob-style patterns (cf. Sec. 2.4), the target will be ignored, and when
it appears as primary or secondary dependency, it will be removed from that list of
dependencies.

This behaviour alone can result in targets with an empty source file list, e.g. if
you exclude some .c file and then TMK wants to execute the rule to generate the
corresponding .o file. So TMK checks if due to exclusion the source file list (the
primary dependencies only) has become empty. If so, the target is also excluded
recursively. Here is an example:

target BC
�
B C � � puts "$TARGET <- $SRC" �

target
�
A B C � � $ROOT.src � � puts "$TARGET <- $SRC" �

target
�
A.src B.src C.src � � � � puts "$TARGET <- scratch" �

build
�
A BC �

lappend EXCLUDE B C.src

In this example, the targets B and C.src are excluded from the building process.
The result is that neither C, nor BC can be built. The corresponding TMK output looks
like this:

A.src <- scratch
A <- A.src
tmk: BC skipped due to exclusion

The debugging output (using tmk -debug, cf. Sec. 3.8) is a bit more explicit
about the exclusions that take place:

tmk: [dbg] toplevel targets: A BC
Linux2.2/A.src <- scratch

3.6. EXCEPTIONS AND EXCLUSIONS 45

Linux2.2/A <- Linux2.2/A.src
tmk: [dbg] excluding [B] from BC’s primary dependencies
tmk: [dbg] BC <- [C], []
tmk: [dbg] excluding [C.src] from C’s primary dependencies
tmk: [dbg] C <- [], []
tmk: [dbg] skipping C due to exclusion (no source files left)
tmk: [dbg] skipping BC due to exclusion (no source files left)
tmk: BC skipped due to exclusion

For some files, especially secondary dependencies, it has turned out to be reason-
able excluding these files immediately before they are considered in the depedency
chain computation. TMK allows you to define exclusion patterns so that files matching
any of these patterns will be discarded when passing them to the depend command.
This completely avoids the timestamp check for these files, and can thus result in a
noticable speedup.

For example, you know that some directory /usr/bla only contains system files
which are nearly never updated. However, files from that directory are often included
into your source files, resulting in a large number of secondary dependencies. In this
case you write

lappend DEPEND EXCLUDE /usr/bla/*

and the dependencies created by these files will be discarded as soon as they are
passed to the depend function.

Please note that $DEPEND EXCLUDEmust be set before depend is called, since
it has an immediate effect on the execution of the depend function. Furthermore,
although you can use T-expressions (e.g. $TARGET or $ROOT) in the declaration
of secondary dependencies (cf. Sec. 3.5.3), these will not yet be expanded when the
dependency exclusion test is performed. This means that the following example does
not work:

this won’t work!
lappend DEPEND_EXCLUDE xy*.bar
depend *.foo

�
$ROOT.bar �

The above example will not exclude all dependencies of the form xy*.bar, since
the unexpanded dependency file name in the depend call, $ROOT.bar, does not
start with xy.

46 CHAPTER 3. TARGETS AND DEPENDENCIES

3.7 Target Directories

As already mentioned in some of the previous sections, TMK tries to place all gen-
erated targets into a special directory that depends on the architecture of the current
machine. For example, if you generate a target named filename on a machine
with the operating system Linux version 2.2, the $TARGET variable inside the rule
will expand to Linux2.2/filename. If you are on a machine running IRIX, all
targets will be generated in some directory like IRIX6.5.

This means that as long as you use the provided T-variables inside the rule scripts,
TMK will put all generated files into an architecture-dependent directory for you. This
is very convenient if you work on different machines or under different operating sys-
tems, especially if you develop software for multiple platforms. Since the directory
name changes with the architecture, the generated code from mutliple systems will
never get mixed.

target x
� � �

puts $TARGET
puts [targetname_short $TARGET]
puts [targetname_long $TARGET]

�
build x

If you run the above example under Linux 2.2 machine, you should get the output
Linux2.2/x, x, and Linux2.2/x.

As you see from the example, you can remove the architecture-specific part of a
filename by using the procedure targetname short. Its counterpart, target-
name long, includes the target directory if the architecture-dependent building is
switched on.

For some applications, this default behaviour is not desired. You can switch off
the architecture-dependent target location by setting the global variable $USE ARCH
to 0. In that case, the above example would yield three times the same result, which
is simply x.

The name of the target directory is specified in the varibale $ARCH. The default
value of $ARCH is set like this:

if
�
$CODELEVEL == "dbg" � �
set_ifndef ARCH $

�
OS � $ � OSVER �

� else
�

set_ifndef ARCH $
�
OS � $ � OSVER � _$ � CODELEVEL �

�
$OS and $OSVER contain the name and version of the detected operating system,

3.8. DEBUGGING 47

e.g. Linux and 2.2, or IRIX and 6.5. $CODELEVEL is a symbol for defining the
“level” of generated code, e.g. the amount of debugging information or optimization
when generating object files. You can find more information about code levels in
Chapter 6. The default codelevel is dbg . You can query most of the configuration
settings by invoking

tmk -sysinfo

Usually, you do not modify the name of the target directory directly. If you do not
want to use the default name for the target directory, you should change it in the
project TMakefile (cf. Sec. 5), or even in the configuration of your TMK ver-
sion [?]. The user should only influence the output directory through the code level
command line options (e.g. -prf or -max). In certain cases, however, you may di-
rectly override the default value for $ARCH using the -arch command line option:

tmk -arch Special

3.8 Debugging

Usually TMK only prints the explicitly specified log messages and the echoed system
commands that are executed. However, you can request some additional information
on what is actually going on through the -debug command line option. If you use
-debug once, TMK will also print which files are read and the reasons why a target
needs to be updated. Take this small example:

target
�
A B C D � � � �

set txt "creating $TARGET"
puts $txt
write_file $TARGET txt

�
depend A

�
B C �

depend B
�
D �

build A

Now if you type tmk -debug, a lot more output will be produced. After some
messages concerning the configuration, TMK outputs the actions that happend during
the processing of the TMakefile, in a way similar to this:

tmk: [dbg] ----- begin processing TMakefile -----
tmk: [dbg] adding rule A <-
tmk: [dbg] adding rule B <-
tmk: [dbg] adding rule C <-

48 CHAPTER 3. TARGETS AND DEPENDENCIES

tmk: [dbg] adding rule D <-
tmk: [dbg] adding secondaries: A <- [B C]
tmk: [dbg] adding secondaries: B <- [D]
tmk: [dbg] adding default target A
tmk: [dbg] ----- end processing TMakefile -----

This output corresponds directly to what is written in the TMakefile. After
having processed the TMakefile, the target building process starts with the toplevel
targets. Here are some of the messages from the debugging output:

tmk: [dbg] toplevel targets: A
tmk: [dbg] A <- [B C]
tmk: [dbg] B <- [D]
tmk: [dbg] D <- []
tmk: [dbg] Linux2.2/D gets built because it has no

prerequisites and does not exist
creating Linux2.2/D
tmk: [dbg] B must be built because Linux2.2/D has been updated
tmk: [dbg] B must be built because it does not exist.
creating Linux2.2/B
tmk: [dbg] A must be built because Linux2.2/B has been updated
tmk: [dbg] C <- []
tmk: [dbg] Linux2.2/C gets built because it has no

prerequisites and does not exist
creating Linux2.2/C
tmk: [dbg] A must be built because Linux2.2/C has been updated
tmk: [dbg] A must be built because it does not exist.
creating Linux2.2/A

As you can see, you can easily follow the chain of events and conditions that TMK

uses for processing its rules. If you get a lot more debugging output and you want to
follow just the chain of reasoning, you can simply search for the word “because” in
the output.

Now that all the targets have been created, let us pretend that the target C has just
been freshly updated (and thus is newer than all other targets):

tmk -debug -up C

Now the debugging output looks like this:

tmk: [dbg] marking C as updated (Thu Jan 01 01:00:00 "MET 1970)
tmk: [dbg] toplevel targets: A
tmk: [dbg] A <- [B C]

3.8. DEBUGGING 49

tmk: [dbg] B <- [D]
tmk: [dbg] D <- []
tmk: [dbg] nothing to be done for IRIX6.5/D
tmk: [dbg] nothing to be done for IRIX6.5/B
tmk: [dbg] IRIX6.5/A must be built because C has been updated
creating IRIX6.5/A

If for some reason you want to have even more debugging information, you can
specify -debug twice or even more often. With increasing debugging level, more
and more detailed information is printed.

If you want to see what will happen when you call TMK, but you do not dare to
really execute it, use the -pretend command line option. In that case, the target
rules will not be executed, but merely printed to the standard output. Unfortunately,
this output does not always give satisfactory results, since the rules may still contain
unexpanded variables and procedure calls, so that you may not only see the resulting
primitive commands.

In addition to display all the debugging information, you may also selectively
trace individual variables and procedures, e.g. if you want to know which value a
variable has, or where it is modified. So if you want to know who modifies the
$qt::DIR variable and the $cxx::FLAGS variable, you can do as follows:

tmk -vtrace ::qt::DIR -vtrace ::cxx::FLAGS

Of course you can use these options along with all other operations of TMK, e.g.
combine it with the -debug option, or follow the configuration system using -
reconfig .

If you want to track procedure calls rather than variable modifications, you can use
the -ptrace option in the same fashion. Just specify the fully qualified procedure
name, and you will be shown all calls to that procedure, along with the corresponding
arguments. Note, however, that procedure tracking only works if the procedure has
already been defined either in the TMK core system, or before reading the TMake-
file.

The -rules option lets you review all the rules that are defined by the used
modules, the local TMakefile, the TMakefile.proj (cf. Sec. 5 etc.). Instead
of building the targets, the complete active rule database is printed to the standard
output. In the case of our example, the output for target A looks like this:

A <- :

set txt "creating $TARGET"
puts $txt
write_file $TARGET txt

A secondary dependencies:
B C

CHAPTER 4

Modules

Technically, modules are not much more than files containing TCL/TMK source
code. Conceptually, a module represents a well-defined set of target definitions and
parameters that can be used to generate a certain class of targets. This section explains
how to use and write modules, rather than going into the details of individual modules.
For more information about some of the provided modules, please have a look at
Chapter 6 (compiling and linking), at the TMK reference manual [?]. You may find
even more modules (e.g. some that are not included in the TMK distribution) on the
TMK web pages [?].

4.1 Loading a Module

Modules are loaded explicitly from within the TMakefile using the module com-
mand, or via the command line using the -mod option. The module command
in a TMakefile is excuted directly, whereas the command line option leads to the
execution of the corresponding command after the parsing of the TMakefile. Here
is an example TMakefile:

module
�
cxx qt �

The only argument to the module command is a list of modules, like cxx and qt in

52 CHAPTER 4. MODULES

this case. The above example will cause the following action:

� TMK looks for certain module macro variables in the namespaces cxx and
qt (cf. Sec. 2.11). Some of these variables will trigger a certain action, for
example the variable qt::DEPEND defines which other modules are required
so that the QT module can work (cf. Sec. 4.4)

�
TMK searches the files cxx.tmk and qt.tmk (all lower case) in the following
directories:

– ./

– all “:”-separated paths listed in the TMK MODULE PATH environment vari-
able

– the modules subdirectory of the TMK home directory (which is usually
set via the environment variable TMK HOME)

The first file that is found will be read and executed in the corresponding mod-
ule namespace.

� if for some module neither any module-specific variable nor a module file was
found, TMK exits with an error message

� TMK appends the module names to the $MODULES variable; new modules are
only loaded if they are not already contained in $MODULES

In addition to loading a module “just so”, you can also require a specific version of
a module. A version is represented by an arbitrary version number string, and you
can request a specific version by appending a version string to the module name,
separated by a double colon (“::”) like for a namespace:

module
�
cxx �

module
�
glut::3.7 qt::2.0.1 �

In the above example, the current version of the C++ module is requested, along with
specific version of the modules glut and qt . Note that you cannot load module
versions that have not been configured (cf. next section), and more importantly, you
cannot load two different versions of the same module at a time. You can query the
version of a loaded module via the variable $module-name::VERSION. If you
want to find out which version of a module are installed on your TMK system, type

tmk -modver module-name

and TMK will output all available versions of the named module.

4.2. DELAYED EVALUATION AND VARIABLE INITIALIZATION 53

4.2 Delayed Evaluation and Variable Initialization

Since a module is loaded and executed immediately when the module command is
read, it is important to think about the order and time of the operations executed by
the module. The general idea is that although a TMakefile contains a sequence of
commands, this should only define a number of rules and parameters in a declarative
manner. This means that it should usually not matter whether a global variable is set
before or after loading a module.

In order to support this idea, TMK provides the eval later command. Its only
argument, an arbitrary script, will be executed after the TMakefile has been parsed
and executed completely. If you define multiple eval later scripts, they will be
executed in the order of their definition.

Usually, the actual module actions are all delayed until after the end of the TMake-
file, or the module does only define a number of targets or dependencies anyway.
Here is an example module:

mymodule.tmk
set_ifndef USE_IT 1
set_ifndef FLAGS "1 2 3"
eval_later

�
if $USE_IT

�
...

�
�
There are two important things about this simple example. First, variables are as-
signed their default values in the module using the set ifndef command (cf.
Sec. 2.3). This ensures that if the user defines some of the values in a different way
before loading the module, they will not be overridden by the default values.

Setting variables’ values at the right time becomes even more difficult when the
user desires to use and modify the default value. In that case, the user must make
these modifications after loading the module, like in this example:

module mymodule
lappend mymodule::FLAGS 7 8 9

After executing this example, the value of $mymodule::FLAGS is "1 2 3 7 8
9". If the lappend line had been executed before the module command, the result
would have been "7 8 9", since the set ifndef command in the module would
have had no effect.

54 CHAPTER 4. MODULES

4.3 Module Configuration

One of the general ideas of TMK is that the module file should only define the ge-
neal rules how to deal with a certain task, and system-dependent things like package
locations, executable names, system-dependent flags etc. will be put into a config file.

To this end, not all variables should be set directly in the module file, but rather in
the appropriate architecture and site config files. A lot can be said about the general
organization of TMK’s configuration system [?], but here we only briefly sketch the
most important facts from the user’s point of view.

In general, a module serves as an interface to a certain software package, as
for example a library, a converter tool, or a set of compilers. Usually the mod-
ule needs to know where this package is installed on the current system. There-
fore, TMK processes so-called site-config files that can be found in the subdirectory
config/site-config of the TMK installation directory. After processing some
general and architecture-dependent configuration files, TMK looks for site-specific
files in the site config directory, in the following order:

� site-config.tmk

� $
�
DOMAIN �

� $
�
DOMAIN � :$ � OSCLASS �

� $
�
HOST � :$ � DOMAIN �

� $
�
HOST � :$ � DOMAIN � :$ � OSCLASS �

where $HOST is the name of the current machine, $DOMAIN the name of the network
domain or localdomain, and $OSCLASS the current operating system’s type, e.g.
unix, windows, or macintosh. Each of these files is first searched in the sub-
directory config/site of TMK’s installation location, and directly afterwards in
the user’s private site config directory, e.g. <home dir>/.tmk/site-config
on UNIX-like systems. This way, the user can override all site-config settings by
settings in his or her home directory.

You can make TMK output the values of the system-dependent variables, and also
output the order of config files that are being read. Try the following two commands:

tmk -sysinfo
tmk -reconfig

TMK only performs the “file walk” across the configuration tree when it is started
for the first time on a machine or when tmk -reconfig is called. It stores the
resulting configuration values in a cache file. This cache file has a unique name for

4.3. MODULE CONFIGURATION 55

each operating system on each host. TMK outputs this cache file name along with
other information upon using the -reconfig option.
In order to define such cached variables, the config files use the config command
provided by TMK. config has a number of sub-commands and can be used to
manipulate, query, read, and save the config cache. From the user’s point of view, the
most important subcommands are variable, set, and proc, since they provide
the means to define new variables and procedures and add the to the cache. After
being defined, they can be used as any other TCL/TMK variables/procedures, the only
difference is that they will be saved in the config cache lateron. Here is an example
from an existing site-config file:

namespace eval qt
�

config set DEPEND
�
gui �

config set LIBPATH /opt/pckg/qt2/lib32
config set INCPATH /opt/pckg/qt2/include
config set LIBS

�
qt �

�
namespace eval qgl

�
config set DEPEND

�
qt opengl �

config set LIBS
�
qgl �

�

These commands define some variables in the namespaces of the qt and qgl mod-
ules, so afterwards there exist TCL variables like qt::DIR or qgl::LIBS. Instead
of the above syntax, you can also use:

config set qt::DEPEND
�
gui �

config set qt::LIBPATH /opt/pckg/qt2/lib32
config set qt::INCPATH /opt/pckg/qt2/include
config set qt::LIBS

�
qt �

config set qgl::DEPEND
�
qt opengl �

config set qgl::LIBS
�
qgl �

In contrast to the TCL set command, config setlso creates the necessary names-
pace if it does not already exist. So you can use any kind of qualified or unquali-
fied names in conjunction with config set. In the same manner, you can define
cached config procedures with the config proc command.

If you want to configure different versions of the same module, just add children
namespaces to the module’s namespace, and redefine variables and procedures there.
If a specific module version is requested, TMK will recurse down into the right chil-
dren namespace and import all variables and procedures from there into the module’s

56 CHAPTER 4. MODULES

namespace:

namespace eval qt
�

config set DEPEND
�
gui �

config set LIBPATH /opt/pckg/qt2/lib32
config set INCPATH /opt/pckg/qt2/include
config set LIBS

�
qt �

namespace eval 2.0.1
�

config set LIBPATH /opt/pckg/qt-2.0.1/lib32
config set INCPATH /opt/pckg/qt-2.0.1/include

�
�

For this example, the default version of qt will be found in /opt/pckg/qt2,
which may for example be a link to the latest version, whereas module qt::2.0.1
will set up the QT version in directory /opt/pckg/qt-2.0.1. Note that you only
need to override those variables that differ from the parent version.

4.4 Module Macro Variables

As already briefly mentioned in Sec. 4.1, there are a number of variables that trigger
certain associated actions when the corresponding module is executed, even if there
is no module file at all. This is very convenient for very simple “modules”, like for
example those that merely define a number of system-dependent library names and
include paths. E.g. if the command module xyz is excuted, TMK will look for
some special variables in the namespace xyz, and trigger actions for the following
ones:

� $xyz::DEPEND: contains a list of modules on which xyz depends. They
will be executed before the xyz module file is actually read.

� $xyz::LDFLAGS: append the specified flags to $link::FLAGS (see Chap. 6)

� $xyz::LIBPATH: appends the specified library directories to $link::LIBPATH

� $xyz::INCPATH: add compiler flags to search header files in the specified
include directories (e.g. -I...)

� $XYZ::LIBS: append the specified libraries to $link::SYSLIBS

The definition of the predefined module macro variables can be found in the source
file module macro vars.tmk in the src subdirectory of the TMK installation. If
needed, you can simply add more such definitions via the config files.

4.5 Example: a LATEXModule

. . . to appear . . .

CHAPTER 5

Projects And Directories

So far in this manual, we have only considered small examples that exist on their
own and are implemented in a single TMakefile in some directory. When creating
larger projects, e.g. in the context of software development, web page management,
or distributed systems administration, it is more likely that you organize tasks in a
hierarchical manner, most often using a directory tree. In this chapter, you learn how
TMK supports the project concept, and how you can effectively use TMK to organize
your own projects.

5.1 Project Directory and Project Files

As already mentioned, projects are usually structured as a directory tree. In each sub-
directory, there is a TMakefile that defines the local tasks that have to be processed
there. Before that, TMK searches for a project file in the root of the hierarchy. This
file, called TMakefile.proj, contains a number of definitions that are globally
valid in the complete project.

So when you start TMK in some directory, it actually first look for a file called
TMakefile.proj in the current directory. If it cannot find it, TMK recursively
looks in the parent directory until it reaches the root of you directory tree. If TMK

finds a project file, it sets the variable $PROJDIR to the corresponding directory, and

60 CHAPTER 5. PROJECTS AND DIRECTORIES

$PROJROOT to the parent of that directory. The project TMakefile may not be
located in the root directory, or unsatisfactory results will occur. If TMK does not
find a project file, $PROJDIR is set to the current directory, and $PROJROOT to its
parent.

The two variables $PROJDIR and $PROJROOT can be used conveniently for
addressing files in other parts of the project without using the absolute location of the
project directory. Additionally, TMK defines the variables $SUBDIR and $DIRTAIL
that contain the subdirectory relative to the project root, and the local name (the last
path segment) of the current subdirectory. For example, if we were in /x/a/b/c,
and if the TMakefile.proj is in /x/a, then the following values would be set:

$PROJROOT = /x
$PROJDIR = /x/a
$SUBDIR = a/b/c
$DIRTAIL = c

The TMakefile.proj usually contains a number of project-global definitions
shared by all users of the project. If a user wants to modify one or more is these
definitions for only himself or herself, this should not be done in the common project
file (especially if the file is version-controlled and the user would risk to commit his
or her private changes by accident). So there is another file that TMK looks for in the
same place as the TMakefile.proj, which is called TMakefile.priv. It is
read immediately after the TMakefile.proj, and can override or change all the
previous definitions.

If for some reason you want to specify the location of the TMakefile.proj
or TMakefile.priv explicitly, you can do this using the TMK command line op-
tions -proj and -priv , or prevent TMK from reading the corresponding file by
specifying -noproj or -nopriv . A TMakefile.priv is only read after a
TMakefile.proj has been read. See tmk -help for details.

5.2 Subdirectory Processing

As already mentioned, a project usually consists of a directory tree with a global
project file and a local control file for each subdirectory. Since the users often desire
some simple means to build the complete project through only a single command,
TMK supports recursive subdirectory processing. The general idea is that all the sub-
directories are built before the current directory is processed (a so-called bottom-up
approach)1. The corresponding TMK command is called subdir, and it immediately

1In future TMK versions, it may be possible to toggle this behaviour, so that parent directory targets
are built before those in their subdirectories.

5.2. SUBDIRECTORY PROCESSING 61

calls TMK recursivly for all the specified directories, e.g.

subdir [glob *]

In the above example, the glob command will return a list of all files in the
current directory. TMK discards all arguments that are not directories, and it only
processes directories that contain a TMakefile.

In most projects however, it is usually more convenient to list subdirectories ex-
plicitly in a reasonalble order, since often one directory depends on the other one.
Here is an example:

subdir
�
base base_apps extensions extensions_apps �

The names in the example suggest to structure the directory tree in such way that the
applications (e.g. the executables in the ... apps directories) are separated from the
actual functionality that you might want to put into a reusable library. This has also
the advantage that you have different TMakefile’s for applications and libraries,
which often makes things a lot easier.

By default, TMK executes all the subdir commands it finds in the TMakefile
immediately. You can prevent TMK from recursing into subdirectories using the -
local command line option.

For every remaining subdirectory, a new child process with another instance of
TMK is started. The executed command is basically

cmd $TMK $ARGS

and TMK will add some more flags for specifying the location of the TMakefile.proj
and TMakefile.priv as well as the output prefix text for the subprocess (-prefix
option). The $TMK variable holds the name of the TCL shell (usually called tclsh)
and the name of the TMK script that the user has invoked. $ARGS contains all the
command line options that have been used for the invoking TMK process, except the
makefile location and prefix flags mentioned before.

If you want to track the TMK subprocess calls, please use the -debug command
line option, where the actually executed commands will be shown.

When TMK recurses into a subdirectory and there is a file called TMakefile.proj
in that subdirectory, then this file is used as new project file, and $PROJDIR etc. are
set accordingly. This means that in special cases you may have something like sub-
projects in your directory structures, or that you can place arbitary TMakefile’s
in the parent directory of your projects that will build all the projects in a specified
order with just one call to TMK. Be careful, however, since sub-projects are indeed
projects on their own, so variables like $SUBDIR will not reflect the fact that it is a

part of a larger project. However, you can include the definitions of the parent project
file manually (by using TCL’s source command), and you could even change the
variables $PROJROOT, $PROJDIR, and $SUBDIR in the sub-TMakefile.proj
to reflect the sub-project structure that you intend.

5.3 Project Location Path

As already mentioned in the previous sections, one general idea of TMK’s project
concept is that all project-related file and directory names are specified in the same
location-independent manner as in the $SUBDIR variable, meaning that a project-
relative path starts with the (directory) name of the project, followed by the actual
subdirectory within that project. Or, in other words, the project-relative path is just
the path from the parent of the project directory ($PROJROOT) down to the actual
file or directory. If this notation is used consequently everywhere, it is really easy to
relocate projects and yet maintain a unique naming scheme throughout all projects,
given, that no project name is used twice.

In order to facilitate transparent project relocation, TMK defines the $PROJ LOCATIONS
list and a the find proj file function in the default module (which is always
loaded). The idea is that whenever you need to find a file that has been specified by
a project-relative path, find proj file will find the absolute location of that file
for you.

To that end, the user must include the parent directories of all projects in the
$PROJ LOCATIONS list. find proj file will always look in $PROJROOT
(the parent of the current project) first, and then in all the directories specified in
$PROJ LOCATIONS.

If you want to see an example of how this mechanism can be used, have a look at
the way the link module handles project libraries and include paths (Sec. 6.3).

5.4 An Example Project

Currently, we do not provide a very sophisticated example project here. Please have a
look at the demo-proj directory in the TMK dirstibution, or on the TMK web pages.

CHAPTER 6

Compiling and Linking

This chapter teaches you how TMK can be used for software development. This
involves things such as compiling source code into object files and linking object
files into executables and libraries, but it also includes other tasks such as project
organization and distribution building.

The first section gives a quick start for those who just want to compile a program
using TMK. After that, you can learn more about some advanced parameters of the
compilation and linking modules, followed by some general ideas about the structur-
ing of larger code projects and the automatic creation of executable distributions.

Finally, Section 6.7 briefly describes some related modules, such as for different
code generators, libraries, and versioning systems.

6.1 C++ Compiling and Linking with TMK

If you want to compile and link a program using TMK, you should first create directory
containing your source files. Let us assume that you have the source files a.cxx,
b.cxx, and myprog.cxx, and that you would like to compile them all and make
an executable called myprog (i.e. myprog.cxx contains the main routine for your
executable). In that case, you create a TMakefile with just the following contents:

64 CHAPTER 6. COMPILING AND LINKING

module cxx

This line tells TMK to load the module for compiling C++ code. Since at this point
we do not need any non-standard options, TMK does not need any more information.
When you call TMK in this directory, the following things will happen:

� All .cxx files in the directory will be compiled. The resulting object files will
be named .o or .obj, depending on the operating system.

� All object files except for myprog.o will be put in a local library that will be
named after the directory it is in.

� The executable will be produced by linking myprog.o with the library that
contains the other object files. The suffix of the executable file is also system-
dependent, for example it will be just myprog on UNIX systems, and my-
rog.exe on Windows-style systems.

If you want to generate multiple executable files in the same directory, this works in
exactly the same way, without any further TMK code. TMK will put all object files
that do not correspond to executables in the library, and link all executables with that
library. If no library object files are there, TMK just skips the library linking step.

6.1.1 Code Levels and Output Directory

All files generated by TMK are usually written into an architecture-dependent target
directory (cf. 3.7), so that you can easily distinguish generated files from source files.
The default name of that output directory consists of the operating system name and
version, plus a suffix indicating the code level of the generated files. TMK knows the
following code levels:

� prf: include as much profiling and debugging information in the generated
code as possible, and perform no optimizations

� dbg: include debugging information in the generated code, and perform no
optimizations

� std: standard optimizations and debugging information

� opt: higher-level optimizations (not CPU-dependent), no debugging informa-
tion

� max: highest-level (e.g. CPU-dependent) optimizations, and no non-vital in-
formation in the generated code

6.1. C++ COMPILING AND LINKING WITH TMK 65

You can choose between these code levels using the corresponding TMK command
line options -prf , -dbg , -std , -opt , -max . The default code level is dbg.
The current code level is stored in $CODELEVEL.

Since the platform as well as the code level are reflected in the output directory
name, you can compile your software on different platforms and with different sets
of flags without the chance that different code types will be mixed in the same di-
rectory. Furthermore, you can create further output directory and flag types on your
own, by simply modifying the $ARCH variable (the output directory name) depend-
ing on certain flags. If you also use different C/C++ compilers on the same platform,
you can include the following code in your TMakefile, or better in your TMake-
file.proj (cf. Sec. 6.3.2):

choose c and c++ compiler
ifdef CCOMP

�
set c::COMPILER $CCOMP
set cxx::COMPILER $CCOMP
set ARCH $ARCH_$CCOMP

�

This small script will set the C and C++ compilers as well as the name of the output
directory depending on the value of $CCOMP. You can now set $CCOMP somewhere
in your TMakefile’s, or specify the compiler as a command line argument

tmk -D CCOMP=gcc ...

If the compiler and linker flags that are generated for each code level are not what you
would like them to be, you can either change them in the compiler configuration [?],
or you can manually modify the compiler’s default flag variables, which are called

language::compiler::FLAGS codelevel
and
language::compiler::LDFLAGS codelevel

where language is the language module name (e.g. c or cxx), compiler the compiler
package name (e.g. gcc or mipspro), and codelevel is the codelevel (all in upper-
case letters) for which to change the default flags. The $LDFLAGS ... variable is
used for linking commands, whereas the simple $FLAGS ... flags are used for all
other tasks. Here is a configuration example, althrough we strongly recommend to
use the configuration system for these kinds of things:

66 CHAPTER 6. COMPILING AND LINKING

custom default flags for MIPSpro C++
namespace eval cxx::mipspro

�
set FLAGS_PRF "-g3"
set FLAGS_DBG "-g"
set FLAGS_STD "-g -O"
set FLAGS_OPT "-OPT:Olimit=30000 -O2"
set FLAGS_MAX "-OPT:Olimit=50000 -O3 -INLINE -LNO -

IPA"

set LDFLAGS_PRF ""
set LDFLAGS_DBG ""
set LDFLAGS_STD ""
set LDFLAGS_OPT ""
set LDFLAGS_MAX "-IPA"

�

6.1.2 Linking External Libraries

TMK lets you specify external libraries (e.g. some math or GUI library) that are
needed to run your programs or use your library. There are two different cases:

� you use functions or variables from the external library in the code that is put
into the local library of the current directory

� you only use the external library within the code of an executable, but not
within the local library

In both cases, you need to specify the external library when linking a local executable.
In the first case, however, you want to make sure that whenever you use the local
library fro a different place, the external library will also be used when generating
executables. TMK does this by storing library information in so-called libspec info
files (.libspec), and by reading these files when a project library is used (this is
called transitive linking, cf. Sec. 6.3.2 and Sec. ??).

In order to distinguish the two cases, TMK defines the following variables:

$link::LIBPATH: list of directories in which external libraries will be searched,
in addition to the system’s library search path

$link::SYSLIBS: short names of the libraries that are to be linked

6.1. C++ COMPILING AND LINKING WITH TMK 67

$link::EXE LIBPATH: like $LIBPATH, but only for linking the executable, not
for using the local lib

$link::EXE SYSLIBS: like $SYSLIBS, but only for linking the executable, not
for using the local lib

Here is an example that adds the math library “m” as well as some non-standard
library called somelib that can be found in the directory /somewhere/lib:

lappend link::SYSLIBS m somelib
lappend link::LIBPATH /somewhere/lib

The linkmodule will add the corresponding linker options to the arguments that the
compiler/linker program is called with.

Instead of manipulating the library variables manually, you should rather let mod-
ules do that job for you. In that case, the usually system-dependent library and path
names would be put in a config file (cf. Sec. 4.3), and you would just call:

module
�
math somelib �

The above example affects both the local library and the local executables. If you
want to restrict the effect of a library module to just the executables, you can do as
follows:

link::exe_only
�

module
�
math somelib �

�

The link::exe only command simply ’redirects’ all read/write access to the
$LIBPATH, $link::SYSLIBS, $link::PROJLIBS, and$link::OPTIONS
variables (see also Sec. 6.3.2) so that they affect their corresponding $EXE ...
counterparts. You can place arbitrary TCL/TMK code within the braces following
the command.

6.1.3 Compiler/Linker Flags and Options

As we have seen before, modules and other commands usually generate compiler/linker
flags that are appropriate to do what is desired. If, however, you want to add or modify
some options of your own, you can do this by using $c::FLAGS, $cxx::FLAGS,
and $link::FLAGS. The following example passes the two options “-DHELLO”
and “-woff 15” to the compiler:

68 CHAPTER 6. COMPILING AND LINKING

lappend cxx::FLAGS -DHELLO -woff 15

Since most of the time these kinds of flags are only valid for certain compilers, each
compiler additionally has its own $FLAGS variable that can be set separately. Finally,
both the $cxx::FLAGS and the compiler-specific flags will be used. For example,
for the C++ compiler of the compiler system called gcc you could write:

lappend cxx::gcc::FLAGS -g

You can determine or modify which compilers are available and which compiler
is chosen via the language’s $COMPILERS and $COMPILER variable, e.g.:

tmk -f -
-> tmk: now entering tmk’s interactive mode...
module cxx
puts $cxx::COMPILERS
-> gcc mipspro
puts $cxx::COMPILER
-> gcc

The same compiler environment may be suitable for multiple languages. For exam-
ple, the gcc compiler package can also generate object files from C and Objective C
code. For each language/compiler combination, there is a separate namespace with
its complete set of variables, e.g. c::gcc::FLAGS and cxx::gcc::FLAGS.

6.2 Exclusions and Non-Standard Tasks

Whenever you have source files in your directory that you do not want to be compiled,
or other files that you somehow do not want to be processed by TMK, simply add these
files to the $EXCLUDE list:

lappend EXCLUDE old-prog.cxx

This will prevent TMK from using the specified file for generating any targets, so in
this case no old-prog.o file will be generated.

TMK uses very simple heuristics for determining which source and object files
will be linked into an executable. Basically, the current TMK implementation looks
if there is a keyword resembling ... main(...) in your source code file, and
even does not recognize comments or preprocessor directives1. If due to some reason

1In future, this could be replaced by a language-independent implementation that looks into the
object files and determines if there is any startup code in the object file.

6.3. PROJECT STRUCTURE AND LIBRARIES 69

TMK does not detect correctly which file should be processed as executables, you
need to switch off the language’s automatic executable detection, and list these files
manually, e.g.:

module cxx

switch off detection of executables for C++
set cxx::DETECT_EXE 0

myprog1.o should generate an exe file
lappend link::PROGRAMS myprog1

This mechanism of explicitly specifying executables has another advantage: you
can choose executable names that are not derived automatically from the object file
names. You can do this by specifying a pair (exe-name, obj-name) instead of a single
exe-name element:

set cxx::DETECT_EXE 0
generate myApp instead of myprog1 from myprog1.o
lappend link::PROGRAMS

�
myApp myprog1.o �

6.3 Project Structure and Libraries

If you have more than just a few source and object files, you usually call it a poject and
try to organize it in some consistent way, so that the project is split into several parts,
each representing a logical sub-unit of the whole thing. As explained in more detail
in Chapter 5, TMK supports this idea through the use of a project directory tree and
recursive directory processing. Furthermore, the linker module provides some very
convenient functions for plugging together code from different parts of a project.

6.3.1 Directory Structure and Recursive Processing

In order to build up a whole tree of directories for your project, you simply create all
these directories and put one TMakefile in each. Then, for all directories that have
subdirectories to be processed by TMK, you add a line like this:

subdir
�
subdir1 subdir2 subdir3 ... �

or, if the order in which the directories are processed does not matter, simply put

70 CHAPTER 6. COMPILING AND LINKING

subdir [glob -nocomplain *]

which will simply process all directories that contain a TMakefile in arbitrary or-
der.

Whenever you call TMK in one of the directories, it will first descend into all
subdirectories and call TMK recursively there. After having done that, it will go
back to the original directory and build all targets there. This order of operations is
also called bottom-up, and you have to consider this strategy when building up your
software tree. For efficiency reasons, in one directory you should not depend on code
that is build lateron in another directory.

Within a single directory, TMK checks which targets depend on other targets, and
builds the targets in the proper order automatically. But between different directories,
the current TMK version does no recursive call to build things in the other directory
when they are needed. So for now you have to rely on the fixed bottom-up building
order, which is also the most efficient method considering the number of dependency
checks that needs to be performed2.

If you want to make sure that TMK only compiles in the current directory, but not
in the subdirectories, you can switch off the recursive processing by typing

tmk -local ...

6.3.2 Project Libraries

As already explained before, the default behaviour of the language and linker modules
generates a local library in each subdirectory of a project. These are called project
libraries. Let’s assume that you are in subdirectory a/b/c of project X, and you
want to use the library of subdir x/y from project Y. Then you simply specify

we’re in X/a/b/c, and link Y/x/y
lappend link::PROJLIBS Y/x/y

This way, you do not need to copy libs to special locations or care about the actual
library names or paths. TMK assigns the project libraries unique names that are de-
rived from the project name and project subdirectory path. So library a in project X
won’t be confused by the linker with the same library in project Y.

If you specify libraries to be linked via $link::PROJLIBS as in the example
above (or via $link::SYSLIBS, respectively), TMK assumes that those libraries

2However, it is planned to support automatic inter-directory dependencies and recursive directory
processing in a future release as an option.

6.3. PROJECT STRUCTURE AND LIBRARIES 71

are needed in conjunction with the local library as well as with the local executa-
bles. In contrast to that, you can specify that certain libraries are only needed for
the executables, but not for the local library. As already explained in Sec. 6.1.2,
TMK defines the variables $link::EXE PROJLIBS, $link::EXE SYSLIBS,
and $link::EXE LIBPATH as well as the exe only command to support this.

6.3.3 Transitive Linking

idxlinking!transitive
Although the distinction described in the previous section is not important when

only looking at one directory, it is very important for transitive linking, which is the
recursive process to account for all libraries that are prerequisites for the libraries that
are linked with the current targets. Let us consider the following project structure:

myproj/a
link::SYSLIBS = m

myproj/b
link::PROJLIBS = myproj/a

myproj/c
link::SYSLIBS = qt
link::PROJLIBS = myproj/b

The example just lists which libraries are specified in which project subdirectories.
Subdirectory b/ uses code from a/, and c/ uses code from b. For linking in di-
rectory c/, in the times of shared libraries and templates it is sometimes necessary
to access not only the libraries specified there, but also all the prerequisites such as
myproj/a and m. TMK’s linkmodule provides two ways of achieving this: the the
meta linker options transitive and lib in lib. These options can be added
to, and removed from the $link::OPTIONS variable, e.g.:

lappend ::link::OPTIONS "transitive"
lremove ::link::OPTIONS "lib_in_lib"

Adding the lib in lib switch will cause all libraries specified in $link::SYSLIBS
and $link::::PROJLIBS to be linked into the local library, and should only be
used with shared libraries. Since now the library has a reference to its prerequisites,
transitive linking should be done automatically by any good linker without further
work. However, this method has several drawbacks. First, not every linker is capa-
ble of transitive linking, and second the method creates a lot of references. If at some
point you want to replace a shared library by a different version in a different location,

72 CHAPTER 6. COMPILING AND LINKING

the old references will persist until you rebuild all dependent libraries.
Therefore, TMK also offers a custom solution via the transitive option. When

switching this on, TMK simply records all prerequsite library information (paths and
libs) in so-called libspec information files for each local library. Whenever you use
TMK to link such a library and the transitive option is switched on, the libspec
information is added to the current set of libraries and paths, and so transitive linking
is performed explicitly by TMK.

In our example on page 71, this would mean that a .libspec file myproj/a
would record the need for the math library (m), and in myproj/b there would be
a .libspec file pointing to myproj/a and its prerequisites, represented again
by the math library m. Upon linking in directory myproj/c, TMK wants to link
the lib in myproj/b, and so it additionally reads the .libspec file and therefore
adds myproj/a and m to its current library specification, which is about what is
needed. So far, this explicit transitive linking approach has proved to be very robust
and convenient.

6.3.4 Project Locations

Another very nice feature of TMK’s project management is that not all projects or
parts of the project need to reside in the same location. For example, those projects
that are not changed very frequently but used by a large number of people may reside
in a central location that is provided to all users via a local area network. In this
case, TMK should first look if a user has his or her own version of the project or
subdirectory, and if not, use the centrally provided version.

In order to do this, you just need to specify the project location path via the
$PROJ LOCATIONS variable, e.g. in your TMakefile.proj.

lappend PROJ_LOCATIONS /net/current_projects
lappend PROJ_LOCATIONS /net/external_projects

If you do so, TMK will add all these directories to the include path of the compilers
(e.g. by using something like -I/net/current projects), and it will automat-
ically search project libraries in these other locations.

For example, if you have a large shared project XYZ, and you only want to change
a tiny bit in some subdirectory XYZ/a/b/c, then you only need to put this sudirec-
tory and its parent directories in your personal working area. TMK and the compiler
will search all include files and libraries in your personal directory first, and then in
the $PROJ LOCATIONS path.

6.4. ADVANCED OPTIONS 73

6.3.5 Project-relative Path Specification in Source Files

In your code, you must specify include files relative to the parent of the project direc-
tories, much in the same way as you specify project libraries. Here is an example:

// this is a piece of C / C++ code
#include <OtherProj/a/b/c/some_definitions.h>
#include <ThisProj/proj_header.h>

Like this, the compiler will always use the first matching header file that it finds in
the project locations path.

Please have a look at the demo-proj directory in the TMK distribution in order
to see a practical example of how this project mechanism works.

6.4 Advanced Options

Of course you might not be satisfied with the default action of the compiler and linker
modules. In that case, you can change their behaviour through a number of additional
variables. Furthermore, you can switch off the automatic mechanism completely and
specify the things to be generated by hand. The compiler and linker modules provide
a number of functions and variables for making this easier. We cannot list all the
possibilities here in this tutorial, but we list a few of them.

language::DETECT OBJ switch on/off automatic generation of object files. If set
to 1, the language module will detect source files, and generate targets for the
corresponding object files by calling the function language::make obj.
Default is 1.

language::DETECT EXE switch on/off automatic generation of executable files.
If set to 1, the language module will derive from the source files whether the
generated object file should be used to make an executable, and append the file
name to the $link::PROGRAMS variable. Default is 1 for modules c and
cxx.

link::MAKE LIB switches the generation of a static library in each directory. The
library contains all object files that are listed in $link::LIB OBJ, but not in
$link::PROGRAMS. The default setting is 0 on UNIX systems and currently
1 on Windows systems.

link::MAKE SHLIB switches the generation of a shared library. See $link::MAKE LIB..
Default value is 1 on UNIX systems and currently 0 on Windows systems.

74 CHAPTER 6. COMPILING AND LINKING

link::MAKE EXE switches the generation of executables. If on, TMK will generate
targets for all the executable listed in $link::PROGRAMS. Default is 1.

In addition to these flags, TMK knows a number of so-called meta compiler op-
tions. These options are defined on an abstract level, and then implemented for each
compiler in the best possible way. The meta options can be passed to the compi-
lation and linking stage of the compiler separately, be setting the variables $lan-
guage::OPTIONS and $link::OPTIONS. Furthermore, additional options can
be specified for static or shared lib generation or executable generation by using
$link::LIB OPTIONS, $link::SHLIB OPTIONS, and $link::EXE OPTIONS.

The meta compiler/linker options have just been introduced to TMK. Usually
compilers ignore meta options that they do not implement or that only make sense for
a different operation stage. Currently there are the following options:

� "transitive": tells the linker to also link libs that are prerequisites to the
project libs that are currently used and specified. This is done by storing addi-
tional information in .libspec files along with each generated library. See
Section 6.3 for an example.

� "lib in lib": as an alternative to the "transitive" option, this options
tells the linker to link prerequisite libraries into shared libraries. This is not a
very nice way of solving the problem, since many different references to the
same library will be created. See Section 6.3 for an example.

� "circular": tells the linker to try to resolve circular inter-library dependen-
cies. If a linker does not support this option, tmk usually simulates the effect
by specifying each library twice instead of once (this nearly always works!)

� "rpath": tells the linker to store runtime library path information with exe-
cutables. This is needed for finding shared libraries at runtime.

� "stl": tells the compiler to do everything that is necessary in order to support
the C++ language standard template library. For example, MIPSpro compilers
require the -LANG:std flag.

The currently used default meta options for all stages are
�
transitive circu-

lar rpath � . The best place for changing this behaviour is probably the TMake-
file.proj of your project, e.g.:

6.5. WRAPPING LIBRARIES IN MODULES 75

default meta compiler options
lappend link::OPTIONS transitive circular
lremove link::OPTIONS lib_in_lib
lremove link::OPTIONS stl
lremove cxx::OPTIONS stl
lremove c::OPTIONS stl

There are many more ways of manipulating and using the language and compiler
modules, but they go beyond the scope of this tutorial. Please refer to the TMK refer-
ence manual and the “compiling and linking guide” that will appear soon.

6.5 Wrapping Libraries In Modules

If you want to write your TMakefile’s in a portable and configuration-independent
way, you should not specifiy library paths and names explicitly, but rather wrap each
library in a simple module as explained in Sec. 4. So for example, you can define
a module named math that sets the appropriate paths and libs for using the math
functions. A typical TMakefile would then rather look like this:

module
�
cxx math pthreads qt �

lappend PROJLIBS ...

Note that usually you should load the library modules after the language module,
since the library paths may depend on the atual linker that is used on some systems
such as Windows.

The advantages of the modules approach should be obvious, especially if you
work on multiple platforms, or if library locations may change from time to time.
In that case you only need to change the central configutation file rather than each
TMakefile in order to migrate to the new software location.

However, there is a small design flaw in the current version of TMK, since auto-
matic modules only add libraries and paths to the general variables $link::LIBPATH
and $link::SYSLIBS, and you cannot choose to modify the corresponding $link::EXE ...
variables instead. However, this is not really a serious problem since firstly, in a large
project applications / test programs and software libraries should be placed in sepa-
rate directories, and secondly, if really necessary you can move the libraries and paths
from one variable to the other like this:

76 CHAPTER 6. COMPILING AND LINKING

module qt
lremove link::LIBS $qt::LIBS
lremove link::LIBPATH $qt::LIBPATH
set link::EXE_LIBS [concat $link::EXE_LIBS $qt::LIBS]
set link::EXE_LIBPATH [concat $link::EXE_LIBPATH $qt::LIBPATH]

Admittedly, this is not nice, but at least it is still portable. . .
Another important feature of modules is the version support. This means that you

can configure multiple versions of the same module, and choose a specific version for
those applications that need it. In general, you should try to use version-less module
specifications wherever possible, and only use versions for software that really needs
a specific (e.g. older) version of another package. Here is an example (cf. Sec. 4.1):

module
�
cxx �

module
�
glut::3.7 qt::2.0.1 �

This example loads the generic C++ module, plus specific version of both the glut
and qt modules. Note, however, that you cannot mix different versions of the same
module in one TMakefile.

6.6 Binary Distributions

Binary distributions are a collection of executables and all shared libraries that are
needed to run them. Furthermore, a distribution may contain arbitrary additional files,
e.g. documentation, examples, or data. TMK defines a dist module to facilitate the
generation of distributions. Especially, it finds all necessary libraries for the specified
targets, and also creates a wrapper script for each executable that can be used to
redefine the runtime library path or other environment variables that depend on the
actual location of the distribution. The script determines its location automatically,
so that the distribution can be relocated to any place without any problem.

The current TMK version only supports wrapper scripts for UNIX systems. Here
is a simple example for how to create a distribution in a separate directory:

module dist
lappend dist::TARGETS projA/x/y/$ARCH/myexecutable
lappend dist::TARGETS projA/x/$ARCH/libprojA_x.so

This simple TMakefile causes the following action:

� TMK creates subdirectories bin/ and lib/ below the current output directory

$ARCH/

� executables are copied into bin/ and renamed in oldname.orig

� libraries are copied into lib/

� for all executables and libraries, TMK determines the necessary shared libraries
(via a tool such as ldd), and copies them

� TMK creates a script named dist wrapper in bin/

� instead of every original executable in bin/, a symbolic link is created that
points to dist wrapper

Now, if you call for example bin/myexecutable, this will follow the symbolic
link and call the wrapper script. The script determines the directory it that is in,
and then sets the runtime library path to the lib/ subdirectory. Since the script has
been called via a symbolic link, it can determine which executable it is supposed to
execute, and so it finally calls myexecutable.orig.

This simple mechanism allows to set a number of envinronment variables or dif-
ferent things before calling an executable. Since all executables are called via the
same wrapper, it is really easy to maintain and control the distribution.

In addition to what we have explained so far, the dist module also provides
methods for copying files or file trees, exclusing library trees from being included in
the distribution (e.g. directories that only contain system-internal libs), and add code
to the wrapper script. Please refer to the reference manual or to the examples to learn
more about this.

6.7 Related Modules

Usually software development does not only make use of a single compiler and linker,
but also of a number of conversion or code generation tools and external libraries or
tools. TMK’s module mechanism is a convenient means for providing these additional
features to the user in a transparent way. In the following, we shortly sketch some of
the C/C++-related modules included in the TMK distribution.

Please note that in general, all these modules should be loaded after loading the
language module (like c or cxx), since sometimes one of the modules must know in
advance what linker will be used or for which language it is supposed to generate
code.

. . . sorry, not finished yet . . .

6.7.1 The QT Library

6.7.2 The PCCTS Parser Generator

6.7.3 Lex/flex and YACC/bison

Literature
[1] system manual page for make. (type ’man make’ on UNIX systems).

[2] John K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, 1994.

[3] Hartmut Schirmacher. Installing & Configuring tmk.
http://www.tmk-site.org/doc/.

[4] Hartmut Schirmacher and Stefan Brabec. TMK Reference Manual.
http://www.tmk-site.org/doc/.

[5] Hartmut Schirmacher and Stefan Brabec. tmk web pages.
http://www.tmk-site.org.

[6] Scriptics Corporation. Annotated tcl/tk book list.
http://dev.scriptics.com/resource/doc/books.

[7] Scriptics Corporation. Tcl/tk tutorial list.
http://dev.scriptics.com/resource/doc/start.

[8] Brent Welch. Practical Programming in Tcl and Tk. Prentice Hall, 1999.

[9] Brent B. Welch and Dave Zeltserman. The Complete Tcl/Tk Training Course.
Prentice Hall, 1998.

[10] J. A. Zimmer. Tcl/Tk for Programmers With Solved Excercises That Work With
Unix and Windows. IEEE, 1998.

Index

language::make obj command, 73

ALWAYS BUILD target, 40
ALWAYS BUILD and -nup, 37
append command, 13
append

difference to lappend, 18
$ARCH variable, 46
-arch command line option, 47
architecture-dependent targets, 46
$ARGS variable, 61
args list in user-defined procedure, 28
argument lists, variable, 28
array command, 15
arrays, 14
associative arrays, 14

$BASE variable, 34
boolean expressions, 22
braces

and linebreaks, 12, 23
braces in TCL, 11
break command, 24, 39
build command, 31, 32

c module, 77
C++ compilation, 63
$c::DETECT EXE variable, 73
$c::DETECT OBJ variable, 73
$c::FLAGS variable, 67
$c::OPTIONS variable, 74
catch command, 30
clean target, 40
cmd command, 25

code level, 47
$CODELEVEL variable, 46, 65
command line arguments for tmk, 9
commands

substitution, 13
syntax, 11

commands in TCL, 10
comments in TCL, 10
compilation

code levels, 64
exclude files, 68
output directory, 64

$COMPILER variable, 68
$COMPILERS variable, 68
compiling and linking, 63
concat command, 18
config command, 55
config proc command, 55
config set command, 55
configuration

cache file, 54
for modules, 54
module macros, 56
private site-config files, 54
site-config files, 54

continue command, 24
control flow, 23
cxx module, 64
$cxx::language::FLAGSvariable,

68
$cxx::DETECT EXE variable, 69, 73
$cxx::DETECT OBJ variable, 73
$cxx::FLAGS variable, 67

81

82 INDEX

$cxx::OPTIONS variable, 74

-dbg command line option, 65
-debug command line option, 47, 49,

61
default module, 62
default targets, 31
default values for arguments, 28
delayed evaluation, 53
depend command, 36, 45
depend target, 40
$DEPEND EXCLUDE variable, 45
dependencies

primary, 31
secondary, 36
without rule, 36

dependency files, 41
$DETECT EXE variable, 69, 73
$DETECT OBJ variable, 73
$DIR variable, 34
dist module, 76, 77
dollar signs in expressions, 13
$DOMAIN variable, 54

echo shell command, 25
else branch in if, 23
elseif branch in if, 23
environment variables, 25
error handling

at runtime, 30
escaping for special characters, 12
eval later command, 53
exception command, 42
exception return command, 44
exceptions from rules, 42
$EXCLUDE variable, 44, 68
exclusion of targets, 44
exe only command, 71
exec command, 24
executables

auto-detect, 68

non-default names, 69
expr command, 22
$EXT variable, 34
external libraries, 66

-f command line option, 10, 38
file command, 21, 26
file command

dirname, 26
extension, 26
isdirectory, 26
readable, 26
tail, 26

find proj file command, 62
floating-point values, 22
for command, 23
-force command line option, 37
foreach command, 23
functions, user-defined, 27

glob command, 25, 61
glob-style pattern matching, 16, 34
global command, 28
glut module, 76
grep command, 39

-help command line option, 11
help for command line options, 11
$HOST variable, 54

I-expression, 20
$IBASE variable, 21
$IDIR variable, 21
$IEXT variable, 21
if command, 23
incr command, 24
info command

exists, 14
interactive mode in tmk, 11
invocation of tmk, 9
$IROOT variable, 21
$ITAIL variable, 21

INDEX 83

$ITEM variable, 21
item-dependent expressions, 20

join command, 21

lappend command, 18
lappend

difference to append, 18
lfilter command, 20
$LIB OBJ variable, 73
$LIBPATH variable, 66
libraries

external, 66
for local executables, 71
project libs, 70

libspec info files, 66
lindex command, 18
line break

within braces, 12, 23
link module, 62, 66, 71
$link::EXE LIBPATH variable, 67,

71
link::exe only command, 67
$link::EXE OPTIONS variable, 74
$link::EXE PROJLIBS variable, 71
$link::EXE SYSLIBS variable, 67,

71
$link::FLAGS variable, 67
$link::LIB OPTIONS variable, 74
$link::LIBPATH variable, 66
$link::MAKE EXE variable, 74
$link::MAKE LIB variable, 73
$link::MAKE SHLIB variable, 73
$link::OPTIONS variable, 74
$link::PROGRAMS variable, 69
$link::SHLIB OPTIONS variable,

74
$link::SYSLIBS variable, 66
linking, 63
linsert command, 18
list command, 18

lists in TCL, 17
llength command, 18
lmap command, 20
lmatch command, 20
lminus command, 20
-local command line option, 61
local library, 64
logging, 10
logical operators, 22
loops, 23
lrange command, 18
lremove command, 20

math module, 75
-max command line option, 47, 65
-mfdepend command line option, 37,

38
-mod command line option, 51
module

macro variables, 52
module command, 51, 53
module macro variables, 56
$MODULES variable, 52
modules

delayed evaluation, 53
multiple rules, 35

names
qualified, 29
unqualified, 29

namespace
qualifiers, 29

namespace command, 29
namespaces, 29
$NEWER SRC variable, 34
-nopriv command line option, 60
-noproj command line option, 60
numerical expressions, 22
-nup command line option, 37

-opt command line option, 65
opt module, 51

84 INDEX

$OS variable, 46
$OSVER variable, 46
output redirection in shell commands,

25

PATH environment variable, 25
piping in shell commands, 25
-prefix command line option, 61
prerequisites, 32
-pretend command line option, 49
-prf command line option, 47, 65
primary dependencies, 31
-priv command line option, 60
proc command, 27
procedures

in namespaces, 29
procedures, user-defined, 27
$PROGRAMS variable, 69
-proj command line option, 60
$PROJ LOCATIONS variable, 62
$PROJDIR variable, 59
project libraries, 70
projects

sub-projects, 61
$PROJROOT variable, 60
pseudo target, 39
-ptrace command line option, 49
pwd command, 14, 26

qt module, 52, 56, 76
qt::2.0.1 module, 56
quoting, 11

command substitution, 14
variable expansion, 13

quoting in TCL, 11

read dependencies command, 41
read file command, 27
-reconfig command line option, 49,

55
regexp command, 17
regsub command, 17

regular expressions, 17
renaming executables, 69
return command, 27
$ROOT variable, 33, 34
rule for building a target, 31
rule, for building a target, 34
-rules command line option, 49
runtime error handling, 30

$SECONDARY variable, 34
secondary dependencies, 36
set command, 13, 55
set ifndef command, 14, 53
shell command execution, 24
-silent command line option, 10,

25
software development, 63
source command, 62
source files, 31
special characters, escaping, 12
split command, 21
$SRC variable, 33, 34
-std command line option, 65
string command, 15
string command

compare, 16, 23
first, 16
last, 16
length, 15
match, 16
range, 15
tolower, 15
toupper, 15
trim, 15
trimleft, 15
trimright, 15

subdir command, 60
subdirectory processing, 60
syntax of TCL/tmk scripts, 11
-sysinfo command line option, 54
$SYSLIBS variable, 66

INDEX 85

T-expression, 34
T-expressions, 33
$TAIL variable, 34
$TARGET variable, 33, 34
target

always build, 40
architecture-dependent, 46
building rule, 31
default, 31
order of processing, 42
pseudo targets, 39

target command, 31
target directory, 46
target files, 31
target, unconditional build, 40
target-dependent expression, 33
target failed command, 38
target state command, 38
target untouched command, 38
target updated command, 38
targetname long command, 46
targetname short command, 46
targets

depending on TMakefile, 37
exceptions from rule, 42
exclusion, 44
force building, 37
mark as newly updated, 37
pretend to be untouched, 37
pseudo/special, 40
unconditional building, 33
with multiple rules, 35

TMakefile file, 9
$TMK variable, 61
top-level targets, 32

unconditional build, 40
unset command, 14
-up command line option, 37
up-to-date check, 32
uplevel command, 28

upvar command, 28
$USE ARCH variable, 46

variable command, 29
variable argument lists, 28
variables

arrays, 14
environment, 25
in namespaces, 29
inside quoted expressions, 13
local, 27
module macros, 56
name bracing, 13
substitution, 13

-vtrace command line option, 49

while command, 23
wildcard matching, 35
words in TCL, 10
write file command, 27

